Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselnder Sonnenschein

23.08.2017

Max-Planck-Forscher erklären, weshalb die Helligkeit unseres Tagesgestirns schwankt

Scheinbar ruhig und gleichmäßig strahlt die Sonne vom Himmel. Doch es brodelt auf ihr und sie scheint auch nicht immer mit gleichmäßiger Helligkeit. Für diese Schwankungen sind allein zwei Phänomene ursächlich: die Magnetfelder an der sichtbaren Oberfläche sowie gewaltige Plasmaströme, die aus dem Innern des Sterns emporbrodeln.


Die Plasmaströme im Innern der Sonne erzeugen an ihrer Oberfläche ein charakteristisches Muster: die Granulation. Helle und dunkle Bereiche dieses Musters verändern sich schnell. Die Granulation verursacht vor allem Helligkeitsschwankungen, die sich innerhalb von weniger als fünf Stunden vollziehen. Dieses Bild der Granulation wurde im Jahr 2009 vom Instrumente IMaX des ballongetragenen Sonnenobservatoriums Sunrise aufgenommen.

© MPS


Langfristige Helligkeitsschwankungen der Sonne werden von ihren veränderlichen Magnetfeldern verursacht. An der Oberfläche des Sterns machen sie sich unter anderem durch dunkle Gebiete, Sonnenflecken genannt, bemerkbar.

© NASA/SDO

Zu diesem Ergebnis kommt ein Team unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung. Den Wissenschaftlern gelang es erstmals, Helligkeitsschwankungen auf allen bisher beobachteten Zeitskalen zu rekonstruieren – von Minuten bis zu Jahrzehnten.

Die neuen Erkenntnisse sind nicht nur für die Klimaforschung wichtig, sondern lassen sich auch auf ferne Sterne übertragen. Und sie könnten zukünftig die Suche nach Exoplaneten erleichtern.

Zieht ein Exoplanet an seinem Zentralstern vorüber, verdunkelt sich dieser für kurze Zeit. Selbst aus einer Entfernung von vielen Lichtjahren registrieren Weltraumteleskope diese Veränderung – und spüren somit den Exoplaneten auf. In der Theorie. In der Praxis ist dies komplizierter, denn ähnlich wie die Helligkeit der Sonne schwankt auch diejenige vieler Sterne.

Und diese Fluktuationen können die Signale vorbeiziehender Exoplaneten überdecken. „Wenn man allerdings die Helligkeitsänderungen, die dem Stern selbst zu eigen sind, genau kennt, lassen sich Exoplaneten mit hoher Genauigkeit aufspüren“, sagt Alexander Shapiro vom Max-Planck-Institut für Sonnensystemforschung.

Einen ersten Schritt in diese Richtung gehen Shapiro und seine Kollegen in ihrem aktuellen Beitrag in der Zeitschrift Nature Astronomy – mit einem genauen Blick auf einen besonderen Stern: unsere Sonne. Seit Beginn des Weltraumzeitalters liefern viele Sonden detaillierte Messdaten aus vergleichsweise großer Nähe zum Tagesgestirn.

Diese Daten stellen jedes Modell, das stellare Helligkeitsschwankungen beschreibt, auf eine harte Probe: Lassen sich die gemessenen Schwankungen mit dem Modell rekonstruieren? Und ist es möglich, die Schwankungen auf physikalische Eigenschaften des Sterns zurückzuführen?

Eine besondere Schwierigkeit dabei: Die Helligkeit unserer Sonne variiert auf sehr unterschiedlichen Zeitskalen. Einige Schwankungen vollziehen sich innerhalb weniger Minuten; andere, die sich etwa auf das langfristige Klimageschehen auf der Erde auswirken, können die Forscher erst im Verlauf von Jahrzehnten registrieren. Eine stimmige Theorie, die all diese Größenordnungen umfasst, fehlte bisher.

Der neuen Studie gelingt genau dieses Kunststück. Sie beweist, dass nur zwei Phänomene bestimmen, wie hell unser Stern leuchtet. Zum einen sind dies die heißen Plasmaströme, die aus dem Innern des Gasballs aufsteigen, abkühlen und wieder in die Tiefe sinken. Das aufsteigende heiße Material leuchtet heller als Plasma, das sich an der Oberfläche bereits abgekühlt hat.

Auf diese Weise erzeugen die Ströme ein charakteristisches, sich schnell veränderndes Muster aus hellen und dunklen Bereichen, die sogenannte Granulation. Typische Strukturen darin sind einige hundert Kilometer groß. „Die Granulation verursacht in erster Linie schnelle Helligkeitsschwankungen, die sich innerhalb von weniger als fünf Stunden vollziehen“, sagt Max-Planck-Forscherin und Koautorin Natalie Krivova.

Zum anderen spielen die veränderlichen Magnetfelder der Sonne eine entscheidende Rolle. An der sichtbaren Oberfläche unseres Sterns machen sie sich in Zeiten hoher Aktivität durch dunkle Gebiete (Sonnenflecken) und besonders hell leuchtende Bereiche (Fackeln) bemerkbar. Beide Strukturen sind im Vergleich zur Granulation sehr großflächig; einige Sonnenflecken lassen sich sogar mit bloßem Auge von der Erde aus erkennen. Zudem variiert ihre Anzahl und Gestalt deutlich langsamer. Änderungen im Magnetfeld der Sonne sorgen deshalb für Helligkeitsschwankungen, die sich auf Zeitskalen von mehr als fünf Stunden abspielen.

Die Forscher nutzten für ihre Analysen Daten der Raumsonden SOHO (Solar and Heliospheric Observatory) und SDO (Solar Dynamics Observatory), die das Helligkeitsmuster und die Magnetfelder an der Oberfläche des Sterns seit Jahren aufzeichnen. Aus diesen Datensätzen, die zum Teil 19 Jahre solarer Entwicklung abdecken, konnten sie Helligkeitsschwankungen berechnen und wiederum mit gemessen Werten der Raumsonden PICARD und SOHO vergleichen.

Sämtliche bisher gemessenen Helligkeitsschwankungen – sowohl schnelle, als auch sehr langfristige – lassen sich so reproduzieren. „Die Resultate unserer Studie zeigen uns, dass wir in unserem Modell die maßgeblichen Parameter identifiziert haben,“ folgert Sami K. Solanki, Direktor am Max-Planck-Institut für Sonnensystemforschung und Zweitautor der Studie. „Dies wird es uns erlauben, endlich auch die Helligkeitsschwankungen anderer Sterne zu modellieren.“


Ansprechpartner


Prof. Sami K. Solanki
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-325
Fax: +49 551 384979-190
E-Mail: solanki@linmpi.mpg.de
 

Dr. Alexander Shapiro
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-431
E-Mail: shapiroa@mps.mpg.de
 

Dr. Natalie Krivova
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-235
E-Mail: Krivova@mps.mpg.de
 

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462
E-Mail: krummheuer@mps.mpg.de

Originalpublikation
A.I. Shapiro, S.K. Solanki, N.A. Krivova, R.H. Cameron, K.L. Yeo, W.K. Schmutz

Nature of solar brightness variations

Nature Astronomy, online 21. August 2017

Prof. Sami K. Solanki | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
https://www.mpg.de/sonne/helligkeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics