Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Wasser in Flugzeugen auf der Spur - FRM II misst mit Neutronen Feuchtigkeit in Isolierung

05.08.2009
Wenn es beim Landeanflug von der Decke der Flugzeugkabine tropft, dann ist das nur eine von vielen unangenehmen Folgen von zu viel Feuchtigkeit in der Isolierung des Flugzeugrumpfes.

Physiker der Technischen Universität München (TUM) und Ingenieure der Technischen Universität Hamburg-Harburg (TUHH) haben nun einen Ausschnitt einer Flugzeugwand während eines simulierten Transatlantikfluges mit Neutronen untersucht.

An der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM wollten sie herausfinden, wo und wie sich die Feuchtigkeit in der Flugzeugisolierung niederschlägt, um dies zukünftig zu verhindern.

Trockene Luft in Flugzeugen ist für viele Passagiere sehr unangenehm. Für die Sicherheit ist sie jedoch geradezu unabdingbar. Denn feuchte Luft dringt durch die Kabine in die Isolierung des Flugzeugbauches und schlägt sich an der kalten Außenwand als Wasser oder Eis nieder. "Die mehreren hundert Kilo Wasser, die sich aus der Atemluft der Fluggäste dort ansammeln, entsprechen dem Gewicht von mehreren Passagieren", erklärt Dr. Burkhard Schillinger, der die Flugzeugisolierung am FRM II mit Neutronen untersucht hat.

Das Wasser gefriert oder schwappt während des Fluges unkontrolliert im Bauch hin und her, was negativen Einfluss auf die Flugstabilität haben kann. "Und das zusätzliche Gewicht schleppt das Flugzeug jedes Mal unnötig mit sich herum", sagt Schillinger.

Auch die Isolierung leidet unter der Feuchtigkeit: Sie isoliert schlechter, und es kann sich Schimmel bilden. Schlimmstenfalls können sogar in der Elektrik, die sich in der Flugzeugwand befindet, Kurzschlüsse entstehen. "Derzeit muss bei Flugzeugen die Isolierung alle ein bis zwei Jahre ausgetauscht werden", sagt Andreas Joos, Diplom-Ingenieur am Institut für Thermofluiddynamik der TU Hamburg-Harburg. Seit 20 Jahren kennt man das Problem der Feuchtigkeit in der Flugzeugisolierung und seit über 10 Jahren wird dazu an der TU Hamburg-Harburg geforscht. Anfangs tropfte gar bei Landeanflügen das getaute Wasser auf die Passagiere. Inzwischen gibt es spezielle Isoliermaterialien und ein ausgeklügeltes Wasserleitsystem im Rumpf von Flugzeugen. Nach der Landung wird ein großer Teil des getauten Wassers abgepumpt. "Doch das klappt nicht an allen Ecken und Kanten des Flugzeugs", erklärt Burkhard Schillinger. Viel Wasser verbleibt im Bauch des Flugzeugs.

An der TUHH sucht man deshalb gemeinsam mit der TUM nach Lösungen, wie man das Wasser im Flugzeugbauch besser ableiten kann. "Dafür ist es wichtig zu wissen, wie genau sich das Wasser niederschlägt, ob es den Umweg über flüssig nimmt oder gleich gefriert. Und wir wollten wissen, wo es sich ansammelt: In der Isolierung oder an der Außenwand?", sagt Joos.

Um dem Wasser im Flugzeug auf die Spur zu kommen, hat die TUHH gemeinsam mit einem Industriepartner die Isolierung mit Neutronen am Instrument ANTARES (Advanced Neutron Tomography and Radiography Experimental System) der Forschungs-Neutronenquelle in Garching untersucht. Ein Versuchstand der TUHH simuliert eine Flugzeugwand, über die feuchte Luft geleitet wird, die der Atemluft der Passagiere gleicht. "Wir können dort alle Temperatur- und Feuchtigkeitsverhältnisse eines Transatlantikfluges nachahmen", erklärt Burkhard Schillinger.

Die Neutronen des FRM II der TU München zeigen genau, wo sich während der Steigphase, des Fluges, des Sinkfluges und der Bodenphase Wasser oder Eis befinden. "Wir haben zunächst konventionelle Messtechniken, zum Beispiel aus der Bauphysik angedacht, diese liefern allerdings eine zu schlechte Auflösung. Da sehen wir mit Neutronen sehr viel mehr", sagt Joos. Die Neutronen aus dem Reaktor treffen auf die verschiedenen Materialien in der Flugzeugwand. Vom Wasser werden sie am meisten abgebremst. So entstehen am Instrument ANTARES mit Hilfe einer Spezialkamera eine Art Röntgenbilder, welche mit hoher räumlicher Auflösung die Wasserverteilung in der Isolierung abbilden.

Erste Ergebnisse zeigen, dass die Wasserverteilung gut messbar ist. Die Isolierung nimmt vor allem in der Startphase viel Feuchtigkeit auf. "Für uns ist es wichtig, den zeitlichen Verlauf der Feuchtigkeitszunahme zu sehen", sagt Andreas Joos von der TUHH. So können die Wissenschaftler herausfinden, ob die Feuchtigkeit sich schneller auflöst, wenn das Flugzeug beispielsweise eine halbe Stunde länger am Boden bleibt.

Als nächstes wollen die Hamburger Forscher neue Modelle bauen und diese an der Forschungs-Neutronenquelle in Garching untersuchen. Eine Flugzeugwand mit einem Fenster beispielsweise und eine mit einer Stützstrebe. Denn das Wasser schlägt sich an verschiedenen Konstruktionen unterschiedlich nieder. Auch neue Isolierungsmaterialien sollen getestet werden.

Kontakt:
Dr. Burkhard Schillinger
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, D 85748 Garching
Tel: +49 (0)89 289 12185
E-Mail: burkhard.schillinger@frm2.tum.de
Andrea Voit
PR-Referentin
Technische Universität München
Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, D 85748 Garching
Tel: +49 (0)89 289 12141
E-Mail: andrea.voit@frm2.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.frm2.tum.de
http://www.frm2.tum.de/wissenschaft/radiographie/antares/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften