Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Nanokristalle magnetisch werden und dabei auch noch das Licht anschalten

13.04.2017

Nanokristalle sind Objekte mit Ausdehnungen von wenigen Milliardstel Metern. Für die Forschung und die Industrie sind sie ziemlich attraktiv, weil sie vergleichsweise einfach hergestellt werden können und vielfältig anwendbar sind – in der Photovoltaik, der Optoelektronik oder der medizinischen Diagnostik und Therapie. Obwohl fast drei Jahrzehnte intensiv geforscht wurde, gibt es immer noch offene Fragen. Eine davon hat ein internationales Wissenschaftler-Team unter der Leitung der TU Dortmund nun geklärt: Die Physikerinnen und Physiker haben herausgefunden, weshalb Nanokristalle unter bestimmten Bedingungen Licht aussenden obwohl dies eigentlich nicht möglich sein sollte.

Seine Erkenntnisse hat das Wissenschaftler-Team in der renommierten Fachzeitschrift Nature Nanotechnology veröffentlicht.

Injiziert man – beispielsweise über Strom – Ladungsträger in einen Nanokristall mit dem Ziel, diese in Licht umzuwandeln, so fallen ihre Ladungen in den sogenannten Grundzustand. Dort bilden die geladenen Elementarteilchen eine „dunkle“ Konfiguration aus. Ursache hierfür ist der Eigendrehimpuls der Elektonen, also der Spin, der mit einem Kreisel vergleichbar ist.


Injizierte Elektronen bringen Nanokristalle dazu, Licht auszusenden.

Grafik: get4net_Shotshop.com

Quelle: TU Dortmund

Im Grundzustand verhalten sich die Spins der injizierten Ladungsträger in ihrer Summe so, dass eine Umwandlung in Licht eigentlich nicht möglich ist – daher der Begriff „dunkel“. Dies würde ihren Einsatz in der Optoelektronik allerdings erheblich einschränken. Schließlich werden bei der Optoelektronik Bauelemente und Verfahren entwickelt, die elektrische Energie in Licht oder Licht in elektrische Energie umwandeln.

Obwohl eine Emission von Licht eigentlich nicht möglich ist, wurde trotzdem eine intensive Lichtemission aus diesem Grundzustand heraus beobachtet. Eine Kollaboration von Wissenschaftlerinnen und Wissenschaftlern aus Gent, Paris, St. Petersburg und Washington hat unter Federführung von Prof. Dmitri Yakovlev aus dem Bereich Experimentelle Physik 2 der TU Dortmund den Grund für den scheinbaren Widerspruch gefunden. So weisen die Nanostrukturen an ihrer Oberfläche ungebundene Elektronen auf.

Mit diesen Ladungen treten die injizierten geladenen Elementarteilchen in Wechselwirkung über sogenannte Flip-Flop-Prozesse. Dabei tauschen die Eigendrehimpulse einer injizierten Ladung und einer Ladung an der Oberfläche ihre Rotationsrichtung. Dadurch wird die ursprünglich dunkle Konfiguration hell, und Lichtemission ist möglich.

Dies hat aber auch noch eine weitere Konsequenz: Durch das wiederholte Umkehren der Spins nach jeder Injektion von Ladungen werden alle Spins der Elektronen an der Oberfläche entlang einer Richtung orientiert. Darüber wird der Nanokristall magnetisch, was ebenfalls aus der Lichtemission eindeutig hervorgeht.

Das im Nanokristall vorhandene Magnetfeld ist nahezu um eine Million stärker als das Erdmagnetfeld. Die kollektive Orientierung der Oberflächenspins, ohne dass hierfür ein starkes externes Magnetfeld angelegt werden muss, war die Vision eines Pioniers der Spinphysik, Igor Merkulov aus St. Petersburg. Bedauerlicherweise hat er die Umsetzung seiner Vision nicht mehr miterleben dürfen, da er 2012 viel zu früh verstorben ist.

Weitere Informationen:

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2017.22.html

Martin Rothenberg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dortmund.de/uni/de/Uni/aktuelles/meldungen/2017-04/17-04-13_nanokristalle/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften