Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Nanokristalle magnetisch werden und dabei auch noch das Licht anschalten

13.04.2017

Nanokristalle sind Objekte mit Ausdehnungen von wenigen Milliardstel Metern. Für die Forschung und die Industrie sind sie ziemlich attraktiv, weil sie vergleichsweise einfach hergestellt werden können und vielfältig anwendbar sind – in der Photovoltaik, der Optoelektronik oder der medizinischen Diagnostik und Therapie. Obwohl fast drei Jahrzehnte intensiv geforscht wurde, gibt es immer noch offene Fragen. Eine davon hat ein internationales Wissenschaftler-Team unter der Leitung der TU Dortmund nun geklärt: Die Physikerinnen und Physiker haben herausgefunden, weshalb Nanokristalle unter bestimmten Bedingungen Licht aussenden obwohl dies eigentlich nicht möglich sein sollte.

Seine Erkenntnisse hat das Wissenschaftler-Team in der renommierten Fachzeitschrift Nature Nanotechnology veröffentlicht.

Injiziert man – beispielsweise über Strom – Ladungsträger in einen Nanokristall mit dem Ziel, diese in Licht umzuwandeln, so fallen ihre Ladungen in den sogenannten Grundzustand. Dort bilden die geladenen Elementarteilchen eine „dunkle“ Konfiguration aus. Ursache hierfür ist der Eigendrehimpuls der Elektonen, also der Spin, der mit einem Kreisel vergleichbar ist.


Injizierte Elektronen bringen Nanokristalle dazu, Licht auszusenden.

Grafik: get4net_Shotshop.com

Quelle: TU Dortmund

Im Grundzustand verhalten sich die Spins der injizierten Ladungsträger in ihrer Summe so, dass eine Umwandlung in Licht eigentlich nicht möglich ist – daher der Begriff „dunkel“. Dies würde ihren Einsatz in der Optoelektronik allerdings erheblich einschränken. Schließlich werden bei der Optoelektronik Bauelemente und Verfahren entwickelt, die elektrische Energie in Licht oder Licht in elektrische Energie umwandeln.

Obwohl eine Emission von Licht eigentlich nicht möglich ist, wurde trotzdem eine intensive Lichtemission aus diesem Grundzustand heraus beobachtet. Eine Kollaboration von Wissenschaftlerinnen und Wissenschaftlern aus Gent, Paris, St. Petersburg und Washington hat unter Federführung von Prof. Dmitri Yakovlev aus dem Bereich Experimentelle Physik 2 der TU Dortmund den Grund für den scheinbaren Widerspruch gefunden. So weisen die Nanostrukturen an ihrer Oberfläche ungebundene Elektronen auf.

Mit diesen Ladungen treten die injizierten geladenen Elementarteilchen in Wechselwirkung über sogenannte Flip-Flop-Prozesse. Dabei tauschen die Eigendrehimpulse einer injizierten Ladung und einer Ladung an der Oberfläche ihre Rotationsrichtung. Dadurch wird die ursprünglich dunkle Konfiguration hell, und Lichtemission ist möglich.

Dies hat aber auch noch eine weitere Konsequenz: Durch das wiederholte Umkehren der Spins nach jeder Injektion von Ladungen werden alle Spins der Elektronen an der Oberfläche entlang einer Richtung orientiert. Darüber wird der Nanokristall magnetisch, was ebenfalls aus der Lichtemission eindeutig hervorgeht.

Das im Nanokristall vorhandene Magnetfeld ist nahezu um eine Million stärker als das Erdmagnetfeld. Die kollektive Orientierung der Oberflächenspins, ohne dass hierfür ein starkes externes Magnetfeld angelegt werden muss, war die Vision eines Pioniers der Spinphysik, Igor Merkulov aus St. Petersburg. Bedauerlicherweise hat er die Umsetzung seiner Vision nicht mehr miterleben dürfen, da er 2012 viel zu früh verstorben ist.

Weitere Informationen:

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2017.22.html

Martin Rothenberg | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dortmund.de/uni/de/Uni/aktuelles/meldungen/2017-04/17-04-13_nanokristalle/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie