Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wann ist ein Molekül ein Molekül?

18.07.2014

Mit ultrakurzen Röntgenblitzen hat ein internationales Forscherteam Elektronensprünge in explodierenden Molekülen beobachtet.

Die Untersuchung zeigt, bis zu welcher Entfernung ein Ladungstransfer zwischen den beiden Bruchstücken eines Moleküls stattfindet. Mit der verwendeten Technik lässt sich die Dynamik des Ladungstransfers bei einer großen Bandbreite von molekularen Systemen untersuchen, schreiben die Wissenschaftler um Dr. Benjamin Erk und Dr. Daniel Rolles von DESY und Prof. Artem Rudenko von der Kansas State University im US-Fachjournal "Science". Derartige Prozesse spielen bei zahlreichen chemischen Vorgängen eine Rolle, etwa bei der Photosynthese.


Künstlerische Darstellung eines explodierenden Iodomethanmoleküls mit seinen Elektronen.

Bild: SLAC National Accelerator Laboratory

"Der Ladungstransfer findet noch bis rund zur zehnfachen normalen Bindungslänge statt", berichtet Erk, der bei DESY am Freie-Elektronen-Laser FLASH und am Center for Free-Electron Laser Science (CFEL) forscht, einer Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

"Eine zentrale Frage lautet: Wann ist ein Molekül ein Molekül", erläutert Rudenko die Motivation hinter der Untersuchung. "In diesem Fall also, bis zu welcher Entfernung teilen sich die Molekülbestandteile die Elektronen, ab welcher Distanz bricht der Ladungstransfer zwischen den beiden Molekülbruchstücken zusammen. Die von uns gemessene kritische Entfernung markiert den Übergang vom Molekül- zum atomaren Regime."

Für ihre Untersuchung beschossen die Wissenschaftler Moleküle aus Iod und einer Methylgruppe (CH3), sogenanntes Iodomethan (CH3I), mit einem Infrarotlaser und zerbrachen so die Bindung der beiden Partner.

"Mit Hilfe ultrakurzer Röntgenblitze, die Elektronen aus den inneren Schalen der Iod-Atome hinausschlugen, konnten wir anschließend beobachteten, wie sich die gemeinsamen Elektronen des zerbrechenden Moleküls zwischen den beiden Bruchstücken verteilten", berichtet Rolles, der eine Nachwuchsforschergruppe bei DESY leitet. Dazu nutzten die Forscher den zurzeit weltweit stärksten Röntgenlaser LCLS am US-Forschungszentrum SLAC National Accelerator Laboratory in Kalifornien.

"Wir haben den Röntgenblitz bei jedem Schritt etwas später dem Infrarot-Laserpuls hinterhergeschickt", erläutert Erk. Diese Verzögerung betrug zwischen wenigen Femtosekunden und einer Pikosekunde, also bis zu einer billionstel Sekunde. "Je später der Röntgenblitz kommt, desto weiter haben sich die beiden Molekülbestandteile bereits voneinander entfernt." Auf diese Weise gewannen die Wissenschaftler eine Serie von Aufnahmen, auf der sich die Wanderung der Elektronen bei immer größerem Abstand der Molekültrümmer beobachten lässt.

"Je weiter sich die Bruchstücke entfernen, desto stärker nimmt der Ladungstransfer ab", berichtet Erk. "Wir konnten bis zu einer Entfernung von rund 20 Ångström eine Elektronenwanderung zwischen den beiden Bruchstücken nachweisen." Die Bindungslänge von Iodomethan beträgt dagegen nur etwas mehr als 2 Ångström, das sind 0,2 Nanometer (millionstel Millimeter).

"Unsere Ergebnisse sind für eine Reihe von Systemen von Bedeutung", betont Rudenko. "So hat man etwa in der Astrophysik Röntgenstrahlung beobachtet, die von solchen Ladungstransferprozessen erzeugt wird. Derartige Prozesse spielen bei zahlreichen chemischen Vorgängen eine Rolle, etwa bei der Photosynthese oder in Solarzellen. Und in der Forschung haben Wissenschaftler, die mit Röntgenstrahlung Biomoleküle untersuchen, mit Strahlenschäden an ihren Proben zu kämpfen. Auch dabei sind die von uns untersuchten Vorgänge wichtig."

Diese ersten Ergebnisse schlagen zudem eine Brücke zwischen der Untersuchung des Ladungstransfers zwischen einzelnen Atomen und der Analyse des elektrischen Ladungsflusses in größeren Systemen wie sie in der Biologie und der Chemie häufig vorkommen. Weitere Messungen sollen helfen, den Prozess des Ladungstransfers im Detail zu verstehen.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa. Das Center for Free-Electron Laser Science CFEL ist eine Kooperation von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

Originalveröffentlichung
"Imaging charge transfer in iodomethane upon x-ray photoabsorption"; ; Benjamin Erk, Artem Rudenko et al.; "Science", 2014; DOI: 10.1126/science.1253607

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften