Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017

Zentrale Vorhersagen von GSI-Wissenschaftler zur Entstehung schwerer Elemente wie Gold und Platin im Universum sind nun astrophysikalisch beobachtet worden. Erstmals konnten Gravitationswellen von verschmelzenden Neutronensternen nachgewiesen werden. Damit rückt auch das künftige Beschleunigerzentrum FAIR noch stärker in den wissenschaftlichen Fokus, da dort Bedingungen für weitere Forschungen rund um Neutronensterne simuliert werden können.

Am 16. Oktober hat ein internationales Team von Wissenschaftlern, darunter Mitglieder der Kollaborationen am Gravitationswellen-Observatorium LIGO in den USA und am Gravitationswellen-Detektor Virgo in Italien sowie mehrerer astronomischer Gruppen, die erstmalige Beobachtung von Gravitations- und elektromagnetischen Wellen einer Neutronensternverschmelzung bekanntgegeben.


Am künftigen Beschleunigerzentrum FAIR können Bedingungen für weitere Forschung rund um Neutronensterne simuliert werden.

ion42

Es ist spekuliert worden, dass Neutronensternverschmelzungen die bislang unbekannte astrophysikalische Quelle für die schwere Elemente wie Gold, Platin und Uran im Universum sind. Im Jahr 2010 hat eine internationale Kollaboration, geleitet von Gabriel Martínez-Pinedo (GSI Helmholtzzentrum für Schwerionenforschung und Technische Universität Darmstadt) und Brian Metzger (Columbia University) darauf hingewiesen, dass die Synthese von schweren Elementen in einer Neutronensternverschmelzung zu Emission eines eindeutigen elektromagnetischen Signals führt.

Das nun beobachtete elektromagnetische Signal zeigt in der Tat das vorhergesagte charakteristische Muster und bestätigt somit, dass die astrophysikalische Quelle der schweren Elemente nun endlich gefunden ist, und eine der 11 wichtigsten ungelösten Fragen der Physik, wie sie die US National Academies 2003 formuliert haben, beantwortet wurde.

Dieser wissenschaftliche Durchbruch stellt das künftige Beschleunigerzentrum FAIR (Facility for Antiproton and Ion Research), das zur Zeit in Darmstadt entsteht, noch stärker in den wissenschaftlichen Fokus, da dort erstmals die kurzlebigen neutronenreichen Kerne, die das elektromagnetische Signal erzeugen, hergestellt und studiert werden können.

Vor 60 Jahren wurden die wesentlichen Prozesse, die zur Entstehung der Elemente im Universum führen, erstmals beschrieben. Seitdem ist es gelungen, die astrophysikalischen Quellen fast aller Prozesse zu identifizieren. Die Ausnahme bildet der sogenannte r-Prozess, der etwa die Hälfte der Elemente schwerer als Eisen produziert. Dieser Prozess verlangt eine extrem hohe Dichte an Neutronen. Unter diesen astrophysikalischen Bedingungen verlaufen Neutroneneinfänge an Kernen schneller als die konkurrierenden Beta-Zerfälle verlaufen.

„Die Identifikationen des astrophysikalischen Orts, an dem die Elemente schwerer als Eisen im Universum produziert werden, wird als eines der Jahrhundertprobleme der Physik angesehen“, sagt Friedrich-Karl Thielemann, Professor an der Universität Basel und auch Mitglied der GSI Theorieabteilung, der 1999 die ersten Nukleosyntheserechnungen durchführte, die zeigten, dass ein R-Prozess in dem Material, das bei der Verschmelzung von Neutronensternen emittiert wird, ablaufen kann.

Fast gleichzeitig wurde vorgeschlagen, dass der radioaktive Zerfall des frisch synthetisierten Materials ein elektromagnetisches Signal erzeugen würde. Die erste realistische Vorhersage dieses Signals wurde 2010 von einem internationalen Team unter Leitung von Gabriel Martinez-Pinedo und Brian Metzger gegeben. Dem Team gehörten auch Almudena Arcones, GSI und Technische Universität Darmstadt, und Aleksandra Kelic, GSI, an, wobei letztere zusammen mit dem GSI-Wissenschaftler Karl-Heinz Schmidt wichtige experimentelle Anleitungen gab.

Diese Kollaboration sagte vorher, dass die Leuchtstärke der Neutronensternverschmelzung tausend Mal stärker als bei einer Nova sein würde und ihr Maximum nach etwa einem Tag erreichen würde. Das Ereignis wurde deshalb 'Kilonova' getauft. Diese Vorhersage wurde nun durch die Beobachtung des Gegenparts von GW170817 im optischen und infrarotem Bereich bestätigt.

„Dies ist ein einmaliger Vorgang in der Astrophysik“, sagt Gabriel Martinez-Pinedo. „Normalerweise beobachten Astronomen ein neues Phänomen, das dann Jahre später von Theoretikern erklärt wird. Hier haben wir ein neuartiges astrophysikalisches Signal ohne vorherige astronomische Hinweise antizipiert, das dann durch die Beobachtung bestätigt wurde.“

Mehrere Beobachtungen deuten darauf hin, dass das beobachtete elektromagnetische Signal von radioaktiven Zerfällen von r-Prozesskernen erzeugt wird. Die Zeitabhängigkeit des Signals entspricht derjenigen, das erwartet wird, wenn die Energie aus dem Zerfall eines großen Ensembles zerfallender Kerne stammt. Ferner zeigt die Farbentwicklung des Signals, dass eine große Zahl von r-Prozesskernen aus leichteren um die Ladungszahl Z=50 in schwerere Kerne umgewandelt wurden. Es wird geschätzt, dass das Ereignis GW170817 ungefähr 0.06 Solarmassen von r-Prozessmaterial, darunter das Zehnfache der Erdmasse an Gold und Uran, produziert hat.

Die LIGO- und Virgo Kollaborationen gehen davon aus, dass ab 2019, wenn die Detektoren ihre volle Kapazität erreicht haben, Neutronensternverschmelzungen etwa einmal pro Woche beobachtet werden. Dies wird eine vollständig neue Epoche im Verständnis der Nukleosynthese schwerer Elemente einläuten, die auch zum Verständnis der Beobachtungen hochpräzise kernphysikalische Daten, vor allem von neutronenreichen Kernen, aber auch von den Eigenschaften von Kernmaterie verlangen.

Deshalb ist es sehr vorteilhaft, dass mit FAIR der Beschleunigerkomplex, der benötigt wird, um diese Daten zu beschaffen, schon in Darmstadt gebaut wird. Erste Resultate werden schon von der im Jahr 2018 durchgeführten FAIR-Phase 0 Experimenten erwartet. Nach seiner Fertigstellung im Jahr 2025 wird FAIR dann sein vollständiges wissenschaftliches Potential entwickeln und weltweit einzigartige Möglichkeiten zur Erzeugung und Studium der schweren r-Prozesskerne bieten. Bis dahin werden die GSI Theoretiker ihre Forschungen fortführen und ausloten, welches die Schlüsselinformationen zur vollständigen Charakterisierung des elektromagnetischen Signals von Neutronensternverschmelzungen sind und welche Rückschlüsse sie auf die r-Prozess-Nukleosynthese zulassen.

Weitere Informationen:

https://www.gsi.de/start/aktuelles/detailseite/2017/10/16/vorhersagen_von_gsi_wi...

Dr. Ingo Peter | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Antiproton Eisen FAIR GSI Helmholtzzentrum Schwerionenforschung Uran Virgo schwere Elemente

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics