Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Resonanzen und Blockaden oder: Wie wirkt der Kondo-Effekt?

07.10.2016

Physiker der Universität Regensburg bringen neue Erkenntnisse zum Kondo-Effekt hervor

Die Regensburger Physiker um Prof. Dr. Milena Grifoni beschäftigten sich ein weiteres Mal mit der Wirkweise des Kondo-Effektes. Sie fanden heraus, dass der vor 80 Jahren entdeckte Kondo-Effekt unter bestimmten Bedingungen zwei gänzlich verschiedene Wirkungen hervorrufen kann: Resonanzen und Blockaden.


Die negativ geladenen Elektronen stoßen sich gegenseitig ab, eines blockiert die Mitte. Durch den Kondo-Effekt bildet sich eine Elektronenwolke aus und der Strom kann wieder fließen.

Prof. Dr. Milena Grifoni

Das Forschungsergebnis zeigt, dass sich in wissenschaftlichen Entdeckungen vergangener Jahre durchaus noch Geheimnisse verbergen können, die darauf warten, in der Gegenwart oder Zukunft weiterentwickelt zu werden.

Eine der grundlegendsten Fragen in der Physik ist das Verhalten von Materialien bei sehr niedrigen Temperaturen. Bereits 1934 wurde ein neuer Effekt in bestimmten Metallen entdeckt, bei dem unterhalb einer kritischen Temperatur der Widerstand ansteigt, anstatt, wie man vermuten würde, zu stagnieren. Der Grund dafür wurde erst 32 Jahre später von dem japanischen Physiker Jun Kondo gefunden.

Der nach ihm benannte Kondo-Effekt beruht auf Defekten in diesen Metallen, an denen Elektronen streuen können, ähnlich wie Billardkugeln auf einem unebenen Billardtisch. Der Effekt basiert auf der Eigenrotation der Elektronen, dem sogenannten Spin. Dieser kann wegen der Quantenmechanik nur zwei Zustände annehmen, im Englischen oft "up" und "down" genannt.

Wenn die Störstelle einen Spin besitzt, führt dieser zu Prozessen, in denen ein ankommendes Elektron gestreut wird und dabei seinen Spin mit dem der Störstelle austauscht, sogenannte Spin-flip-Prozesse. Kondo hat festgestellt, dass die Gesamtheit vieler Prozesse eine anziehende Wirkung entfaltet und sich eine Wolke aus Elektronen um die Störstelle bildet. Da nun viele Elektronen in diesen Wolken gefangen werden, erhöht sich der Widerstand wieder.

Experimentelle Physiker aus Frankreich haben diesen Effekt in sogenannten Kohlenstoffnanoröhren gemessen. Diese Röhrchen bestehen nur aus Kohlenstoff und sind nur wenige Nanometer dick, können aber sehr lang werden. Die Wissenschaftler haben diese Kohlenstoffnanoröhre zwischen zwei Kontakte gebracht. Durch die negative Ladung der Elektronen und die damit verbundene Abstoßung lässt sich auf diese Weise ein einzelnes Elektron darin fangen, es wirkt dabei wie eine einzige magnetische Störstelle.

Der entscheidende Unterschied zu Metallen ist, dass der Weg für Elektronen vorerst durch das gefangene Elektron blockiert ist. Durch geschickte Einstellung der Experimentparameter lässt sich der Kondo-Effekt herbeiführen und die Kondo-Wolke bildet sich. Sie wird so groß, dass sie beide Kontakte mit einschließt und dadurch Elektronen passieren können.

Im Gegensatz zu Metallen wird der Widerstand dadurch kleiner. Zusätzlich zum Spin gibt es bei den Kohlenstoff Nanoröhren einen weiteren Freiheitsgrad. Die Elektronen können sich beim Überqueren der Röhre auf der Oberfläche im Uhrzeigersinn oder im Gegenuhrzeigersinn schrauben. Jedes Elektron kann also einen von vier verschiedenen Zuständen annehmen, die Kombination aus Spin und Bahndrehimpuls.Das Experiment hat gezeigt, dass nur zwei dieser Zustände wirklich eine Minderung des Widerstandes erzeugen, bei den anderen beiden passiert hingegen nichts.

Das Team um Prof. Dr. Milena Grifoni, Lehrstuhl für Theoretische Physik an der Universität Regensburg, hat jetzt die Begründung für dieses Phänomen gefunden. Die Erklärung ist ähnlich zum traditionellen Kondo-Effekt, bei dem Spin-flip-Prozesse die Resonanz bestimmen. Man kann durch geschickte Kombination aus den vier Zuständen vier Eigenzustände bestimmen und ihnen einen Pseudospin zuweisen.

Dieser verhält sich genau wie der richtige Spin, ist aber ein komplexes, theoretisches Konstrukt. Die Kondo-Resonanz und -Wolke bilden sich jedoch nur bei Prozessen aus, die den Pseudospin flippen, bei den anderen passiert nichts. Das Experiment in Frankreich und die theoretische Erklärung der Regensburger Physiker haben gezeigt, dass der Kondo-Effekt neben den Kondo-Resonanzen eben auch genau das Gegenteil, die Blockade dieser, bewirken kann und dass er selbst nach 80 Jahren seit seiner Entdeckung immer noch Geheimnisse birgt.

Das Forschungsergebnis wurde in der Fachzeitschrift „Nature Communications“ publiziert
(DOI: 10.1038/ncomms12442).

Ansprechpartner für Medienvertreter:
Prof. Dr. Milena Grifoni
Lehrstuhl für Theoretische Physik
Universität Regensburg
Tel. 0941 943-2035
Milena.Grifoni@physik.uni-regensburg.de

Petra Riedl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie