Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Molekülen zu OLEDs

08.04.2015

Wissenschaftler des Mainzer Max-Planck-Institut für Polymerforschung (MPI-P), der BASF Ludwigshafen, der Universität Ulm und des Innovation Lab in Heidelberg entwickeln ein Simulationspaket für die Berechnung der Eigenschaften organischer Leuchtdioden, bei dem ausschließlich die chemische Zusammensetzung benötigt wird. Das Paket ist in die kostenlose Software VOTCA integriert und hilft passende organische Moleküle für Beleuchtungsanswendungen und Displays vorauszuwählen.

ine von Projektleiter Dr. Denis Andrienko geführte Forschungsgruppe am MPI-P (Theorie Gruppe unter Leitung von Prof. Kurt Kremer) hat Multiskalen-Techniken entwickelt, die es ermöglichen die makroskopischen Eigenschaften organischer Leuchtdioden (OLEDs) ausgehend von der chemischen Zusammensetzung vorherzusagen.


Mögliche Abläufe parameterfreier OLED-Simulationen: polarisierbare Kraftfelder und die elektronischen Eigenschaften isolierter Moleküle werden mittels Dichtefunktionaltheorie berechnet. Damit können amorphe Morphologien simuliert werden und die Ladungstransferraten in kleinen Systemen berechnet werden (mikroskopisches Modell). Vergröberte Modelle werden parametrisiert, indem makroskopische Variablen wie Ladungsmobilität des mikroskopischen Modells auf das vergröberte (Gitter-)Modell übertragen werden. Die resultierenden, analytischen Ausdrücke für die Mobilität können dann genutzt werden um Drift-Diffusions-Gleichungen für die komplette OLED zu lösen, nachdem langreichweitige, elektrostatische Effekte und die Elektroden berücksichtigt wurden. Ein alternativer Weg ist die Entwicklung von nicht Gitter-basierten Modellen, bei denen die Verteilungsfunktionen und Korrelationen von Molekülenergien, Transferintegralen und Molekülpositionen reprouziert werden. Die Mastergleichung für dieses Modell kann mittels eines kinetischen Monte Carlo-Algorithmus gelöst werden, sodass man die makroskopischen Eigenschaften der OLED als Ergebnis erhält.

© AFM

Die Verbindung zwischen molekularer und makroskopischer Größenordnung wird durch eine Kombination von "Coarse-Graining" mit einem effizienten Simulationsalgorithmus möglich (siehe Abbildung). Doktorand Pascal Kordt und Postdoktorand Dr. Jeroen van der Holst haben, zusammen mit anderen Entwicklern, die Implementierung dieser Ideen ausgeführt.

Es können nun Elektronen- und Exzitonenbewegung in makroskopisch großen, OLED-Schichten simuliert werden, d.h. Schichten von ca. 100 Nanometern. Die Methoden sind in der wissenschaftlichen Zeitschrift Advanced Functional Materials veröffentlicht, wo man den Artikel auf der Titelseite der aktuellen Ausgabe findet.

Denis Andrienko erklärt den industriellen Nutzen der Software: "Moderne Handys nutzen bereits OLED (AMOLED)-Displays, OLED-Fernseher kommen auch bereits auf den Markt. Dennoch werden in der Forschung nach neuen Materialen diese oft einfach 'ausprobiert'. In unserem Ansatz können die Struktur der Materialien (Morphologie) sowie die Ladungsträgerbewegung darin systematisch vorhergesagt werden, ausgehend nur von der chemischen Strukturformel. Verglichen zu Experimenten ist so eine direkte Verbindung zwischen Chemie und Morphologie möglich."

Seine Erwartung ist, dass diese computerbasierte Forschung in den kommenden Jahren stark wachsen wird, da sie Firmen viel Geld für die Synthese und Charakterisierung neuer Materialien sparen kann. Diese Erwartung wird vom Europäischen Forschungsrat und dem Bundesministerium für Bildung und Forschung geteilt, die das Projekt finanziell unterstützen (MESOMERIE, FKZ 13N10723).

Der Nobelpreis in Physik 2014 wurde für die Erfindung effizienter, blauer lichtemittierender Dioden (LEDs) an Isamu Akasaki, Hiroshi Amano und Shuji Nakamura verliehen. LEDs findet man als Anzeige in Weckern oder Unterhaltungselektronik, sie finden Verwendung in Taschenlampen oder in großen Displays, wo winzige rote, grüne und blaue LEDs einen Pixel formen und Millionen von Pixeln ein Bild. In jedem Pixel findet konstant die Rekombination von Elektronen mit ihren Gegenstücken (Löchern) statt.

Dabei werden Photonen, die Elementarteilchen des Lichts erzeugt. In Abhängigkeit des verwendeten Materials haben diese Photonen verschiedene Energien, oder Wellenlängen, was die Farbe des Lichts bestimmt. Herkömmliche LEDs werden aus anorganischen Materialien hergestellt und zeichnen sich durch lange Haltbarkeit aus.

Die ist bei organischen Halbleitern teilweise noch ein Problem, die jüngste Entwicklung zeigt jedoch, dass diese andere, vorteilhafte Eigenschaften mitbringen: extrem hohe Kontrastraten und die Möglichkeit gekurvte oder flexible Displays herzustellen.

Die Aufgabe von Computersimulationen ist es, die Suche nach passenden Materialien zu unterstützen. Selbst mit modernen Supercomputern ist es jedoch nicht möglich eine komplette OLED mit den Details aller Atome zu simulieren. Daher werden Multiskalensimulationen genutzt: zuerst werden die Eigenschaften eines einzelnen Moleküls auf quantenmechanischer Ebene berechnet.

Anschließend wird ein klassisches Modell des Moleküls parametrisiert, dass dazu dient Systeme mehrerer Tausend Moleküle zu untersuchen. OLEDs sind jedoch aus Schichten in der Größenordnung von 100 Nanometern aufgebaut (Millionen von Molekülen). Im Softwarepaket VOTCA wird ein stochastisches Modell genutzt, dass die Verteilung relevanter mikroskopischer Eigenschaften (z.B. den Abstand zwischen Molekülen) nachbildet, und dann genutzt werden kann um eine komplette OLED zu simulieren.

Trotz eines klaren Plans für die Erforschung neuer OLED Materialien bleibt die Forschung immer spannend, da die Methoden und die Software ständig weiterentwickelt werden.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/Molekuelen_zu_OLEDs - Pressemitteilung und Originalpublikation
http://www2.mpip-mainz.mpg.de/~andrienk/ - Information über Dr. Andrienko und seine Forschung
http://www.mpip-mainz.mpg.de/ - Max-Planck-Institut für Polymerforschung

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Schlüsselmolekül des Alterns entdeckt

20.06.2018 | Biowissenschaften Chemie

Vorhersage von Kristallisationsprozessen soll bessere Kunststoff-Bauteile möglich machen

20.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics