Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Molekülen zu OLEDs

08.04.2015

Wissenschaftler des Mainzer Max-Planck-Institut für Polymerforschung (MPI-P), der BASF Ludwigshafen, der Universität Ulm und des Innovation Lab in Heidelberg entwickeln ein Simulationspaket für die Berechnung der Eigenschaften organischer Leuchtdioden, bei dem ausschließlich die chemische Zusammensetzung benötigt wird. Das Paket ist in die kostenlose Software VOTCA integriert und hilft passende organische Moleküle für Beleuchtungsanswendungen und Displays vorauszuwählen.

ine von Projektleiter Dr. Denis Andrienko geführte Forschungsgruppe am MPI-P (Theorie Gruppe unter Leitung von Prof. Kurt Kremer) hat Multiskalen-Techniken entwickelt, die es ermöglichen die makroskopischen Eigenschaften organischer Leuchtdioden (OLEDs) ausgehend von der chemischen Zusammensetzung vorherzusagen.


Mögliche Abläufe parameterfreier OLED-Simulationen: polarisierbare Kraftfelder und die elektronischen Eigenschaften isolierter Moleküle werden mittels Dichtefunktionaltheorie berechnet. Damit können amorphe Morphologien simuliert werden und die Ladungstransferraten in kleinen Systemen berechnet werden (mikroskopisches Modell). Vergröberte Modelle werden parametrisiert, indem makroskopische Variablen wie Ladungsmobilität des mikroskopischen Modells auf das vergröberte (Gitter-)Modell übertragen werden. Die resultierenden, analytischen Ausdrücke für die Mobilität können dann genutzt werden um Drift-Diffusions-Gleichungen für die komplette OLED zu lösen, nachdem langreichweitige, elektrostatische Effekte und die Elektroden berücksichtigt wurden. Ein alternativer Weg ist die Entwicklung von nicht Gitter-basierten Modellen, bei denen die Verteilungsfunktionen und Korrelationen von Molekülenergien, Transferintegralen und Molekülpositionen reprouziert werden. Die Mastergleichung für dieses Modell kann mittels eines kinetischen Monte Carlo-Algorithmus gelöst werden, sodass man die makroskopischen Eigenschaften der OLED als Ergebnis erhält.

© AFM

Die Verbindung zwischen molekularer und makroskopischer Größenordnung wird durch eine Kombination von "Coarse-Graining" mit einem effizienten Simulationsalgorithmus möglich (siehe Abbildung). Doktorand Pascal Kordt und Postdoktorand Dr. Jeroen van der Holst haben, zusammen mit anderen Entwicklern, die Implementierung dieser Ideen ausgeführt.

Es können nun Elektronen- und Exzitonenbewegung in makroskopisch großen, OLED-Schichten simuliert werden, d.h. Schichten von ca. 100 Nanometern. Die Methoden sind in der wissenschaftlichen Zeitschrift Advanced Functional Materials veröffentlicht, wo man den Artikel auf der Titelseite der aktuellen Ausgabe findet.

Denis Andrienko erklärt den industriellen Nutzen der Software: "Moderne Handys nutzen bereits OLED (AMOLED)-Displays, OLED-Fernseher kommen auch bereits auf den Markt. Dennoch werden in der Forschung nach neuen Materialen diese oft einfach 'ausprobiert'. In unserem Ansatz können die Struktur der Materialien (Morphologie) sowie die Ladungsträgerbewegung darin systematisch vorhergesagt werden, ausgehend nur von der chemischen Strukturformel. Verglichen zu Experimenten ist so eine direkte Verbindung zwischen Chemie und Morphologie möglich."

Seine Erwartung ist, dass diese computerbasierte Forschung in den kommenden Jahren stark wachsen wird, da sie Firmen viel Geld für die Synthese und Charakterisierung neuer Materialien sparen kann. Diese Erwartung wird vom Europäischen Forschungsrat und dem Bundesministerium für Bildung und Forschung geteilt, die das Projekt finanziell unterstützen (MESOMERIE, FKZ 13N10723).

Der Nobelpreis in Physik 2014 wurde für die Erfindung effizienter, blauer lichtemittierender Dioden (LEDs) an Isamu Akasaki, Hiroshi Amano und Shuji Nakamura verliehen. LEDs findet man als Anzeige in Weckern oder Unterhaltungselektronik, sie finden Verwendung in Taschenlampen oder in großen Displays, wo winzige rote, grüne und blaue LEDs einen Pixel formen und Millionen von Pixeln ein Bild. In jedem Pixel findet konstant die Rekombination von Elektronen mit ihren Gegenstücken (Löchern) statt.

Dabei werden Photonen, die Elementarteilchen des Lichts erzeugt. In Abhängigkeit des verwendeten Materials haben diese Photonen verschiedene Energien, oder Wellenlängen, was die Farbe des Lichts bestimmt. Herkömmliche LEDs werden aus anorganischen Materialien hergestellt und zeichnen sich durch lange Haltbarkeit aus.

Die ist bei organischen Halbleitern teilweise noch ein Problem, die jüngste Entwicklung zeigt jedoch, dass diese andere, vorteilhafte Eigenschaften mitbringen: extrem hohe Kontrastraten und die Möglichkeit gekurvte oder flexible Displays herzustellen.

Die Aufgabe von Computersimulationen ist es, die Suche nach passenden Materialien zu unterstützen. Selbst mit modernen Supercomputern ist es jedoch nicht möglich eine komplette OLED mit den Details aller Atome zu simulieren. Daher werden Multiskalensimulationen genutzt: zuerst werden die Eigenschaften eines einzelnen Moleküls auf quantenmechanischer Ebene berechnet.

Anschließend wird ein klassisches Modell des Moleküls parametrisiert, dass dazu dient Systeme mehrerer Tausend Moleküle zu untersuchen. OLEDs sind jedoch aus Schichten in der Größenordnung von 100 Nanometern aufgebaut (Millionen von Molekülen). Im Softwarepaket VOTCA wird ein stochastisches Modell genutzt, dass die Verteilung relevanter mikroskopischer Eigenschaften (z.B. den Abstand zwischen Molekülen) nachbildet, und dann genutzt werden kann um eine komplette OLED zu simulieren.

Trotz eines klaren Plans für die Erforschung neuer OLED Materialien bleibt die Forschung immer spannend, da die Methoden und die Software ständig weiterentwickelt werden.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/Molekuelen_zu_OLEDs - Pressemitteilung und Originalpublikation
http://www2.mpip-mainz.mpg.de/~andrienk/ - Information über Dr. Andrienko und seine Forschung
http://www.mpip-mainz.mpg.de/ - Max-Planck-Institut für Polymerforschung

Natacha Bouvier | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie