Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Völlig neue atomare Kristalldynamik des weißen Farbstoffs Titandioxid entdeckt

30.08.2013
Ein internationales Forschungsteam der Technischen Universität Wien und der Princeton University, USA, hat bisher nur theoretisch vermutete Wechselwirkungen einzelner Sauerstoffmoleküle mit der kristallinen Oberfläche von Titandioxid im Experiment nachgewiesen.

Die Ergebnisse, die für eine Reihe möglicher Anwendungen große Bedeutung haben könnten, sind in der aktuellen Ausgabe der Wissenschaftszeitschrift Science erschienen.


Eine Rastertunnelmikroskopieaufnahme der Oberfläche von Titandioxid mit verschiedenen Formen von Sauerstoff. Die höheren, weißen Gipfel sind Sauerstoffmoleküle, die auf der Oberfläche sitzen, der kleinere Doppelgipfel im Vordergrund ein bereits eingebettetes Sauerstoffmolekül.
Copyright: TU Wien

Titandioxid ist ein ebenso billiger wie hochinteressanter Rohstoff. Es dient als hochweißes Pigment in Wandfarbe, als gewebeverträgliche Beschichtung von Implantaten, als Katalysator zur Ermöglichung chemischer Reaktionen, als UV-Schutz in Sonnencremen und neuestens auch als Schmutzlöser. Auch in der Halbleiterindustrie wird an einer Verwendung von Titanoxid gearbeitet.

Grundlage für all diese Anwendungen könnten atomare Eigenschaften sein, die Ulrike Diebold vom Institut für Angewandte Physik der Technischen Universität Wien und Annabella Selloni vom Frick Laboratory der US-amerikanischen Princeton University mit ihren Teams jetzt entschlüsselt haben.

Sauerstoff dockt an

Diebolds eigentliches Spezialgebiet sind die physikalisch-chemischen Eigenschaften von Oberflächen. „Materialien haben an ihren Oberflächen besondere Eigenschaften, die sowohl für die Theorie als auch für praktische Anwendungen besonders spannend sind“, erklärt die Forscherin. Die Oberfläche von Titandioxid tritt beispielsweise in atomare Wechselwirkungen mit dem Sauerstoff der Luft. Was dabei auf atomarer Ebene genau passiert, das konnten Diebold, Selloni und ihr Team nun erstmals bis in die Details nachweisen. Dazu machte Martin Setvín aus Diebolds Team in Wien Aufnahmen mit einem so genannten Rastertunnelmikroskop. Dabei fährt eine mikroskopisch kleine Metallspitze sehr nahe über die Oberfläche des Kristalls, ohne ihn jedoch zu berühren. Mittels einer zwischen der abtastenden Spitze und der Probe angelegten Spannung fließt ein so genannter Tunnelstrom, dieser Strom wird gemessen und grafisch dargestellt.

Angesaugte Atomlücken

Mit dieser Methode entstehen beeindruckende Bilder, auf denen man einzelne Atome gut ausmachen kann. Den Forschern gelang es nun, mit einer hohen elektrischen Spannung zwischen Rasterspitze und Kristall Lücken im Atomgefüge, die durch einzelne fehlende Sauerstoffatome entstehen, aus der Tiefe des Materials an die Oberfläche zu holen und abzubilden. Damit aber nicht genug. Diebolds Team konnte eine Reihe von Aufnahmen machen, in denen deutlich zu erkennen ist, wie sich bisher nur theoretisch vorhergesagte, verschieden ionisierte Varianten von Sauerstoffmolekülen in die Oberfläche des Kristallgefüges einbetten.

Treibstoff aus CO2, Titandioxid und Licht?

Mit ihrer Arbeit war es dem Forschenden erstmals möglich, diese atomare Dynamik im Titanoxidkristall, die bisher nur in der Theorie vorhergesagt worden war, mit Experimenten zu bestätigen. „Unsere Ergebnisse zeigen deutlich, wie wichtig diese Sauerstofflücken für die chemischen Eigenschaften von Titanoxid sind“, freut sich Diebold über die neuen Daten aus ihrer Arbeitsgruppe, „wir konnten auch zeigen, dass man mit einem elektrischen Feld den Ladungszustand der photokatalytisch aktiven Sauerstoffatome steuern kann. So wird es in Zukunft vielleicht möglich sein, aktivere, sauerstoffreichere Photokatalysatoren zu erzeugen, mit deren Hilfe man Wasser zu Wasserstoff umwandeln kann oder gar die Herstellung energiereicher Kohlenwasserstoffe aus Kohlendioxid, Titandioxid und Licht.“

Originalpublikation
„Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101)“ von Martin Setvín, Ulrich Aschauer, Philipp Scheiber, Ye-Fei Li, Weiyi Hou, Michael Schmid, Annabella Selloni, Ulrike Diebold. Science, 30. August 2013: http://dx.doi.org/10.1126/science.1239879 (abrufbar, sobald der Artikel offiziell erschienen ist)
JournalistInnen erhalten vor Ablauf der Sperrfrist eine Kopie des Originalartikels auf Anfrage direkt an „AAAS Office of Public Programs“ in den USA:
T: +1-202-326-6440
scipak@aaas.org
Fotodownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/titandioxid

Video: http://youtu.be/Jjm6wQKa0Cg

Rückfragehinweis:
Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
M: +43-664-60588-3467
ulrike.diebold@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Antibiotikaresistenzen: Ein multiresistenter Escherichia coli-Stamm auf dem Vormarsch

23.10.2017 | Biowissenschaften Chemie

Sturmfeder bekämpft Orkanschäden

23.10.2017 | Maschinenbau

Vorstellung eines neuen Zellkultursystems für die Analyse von OPC-Zellen im Zebrafisch

23.10.2017 | Biowissenschaften Chemie