Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

VLT entdeckt den am schnellsten rotierenden Stern

05.12.2011
Pressemitteilung der Europäischen Südsternwarte (Garching) - Dem Very Large Telescope der ESO ist der am schnellsten rotierende bekannte Stern ins Netz gegangen.

Der extrem massereiche und helle junge Stern befindet sich in unserer Nachbargalaxie, der Großen Magellanschen Wolke, in einer Entfernung von etwa 160.000 Lichtjahren von der Erde. Astronomen gehen davon aus, dass der Stern eine bewegte Vergangenheit hat: Vermutlich befand er sich ursprünglich in einem Doppelsternsystem und wurde herausgeschleudert, als seine Partner als Supernova explodierte.


VFTS 102 - der am schnellsten rotierende Stern
Bild: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit

Ein internationales Astronomenteam hat mit dem Very Large Telescope der ESO am Paranal-Observatorium in Chile eine Durchmusterung des Tarantelnebels in der Großen Magellanschen Wolke durchgeführt. Ziel der Suche waren die leuchtkräftigsten und massereichsten Sterne des Nebels. Unter den vielen hellen Kandidaten fiel den Wissenschaftlern insbesondere der Stern mit der Bezeichnung VFTS 102 [1] auf: Messungen zeigen, dass er mit einer enormen Geschwindigkeit rotiert – die Äquatorregionen der Oberfläche laufen dabei mit mehr als 2 Millionen km/h um das Sternzentrum. Das entspricht mehr als der 300fachen Rotationsgeschwindigkeit unserer Sonne [2]. Der Stern ist demnach kurz davor, durch starke Zentrifugalkräfte zerrissen zu werden. VFTS 102 ist ist der am schnellsten rotierende bekannte Stern [3].

Die Astronomen haben zudem herausgefunden, dass sich die Geschwindigkeit des Sterns, der etwa die 25fache Sonnenmasse hat und rund 100 mal heller als die Sonne ist, deutlich von den Geschwindigkeit der Sterne in seiner näheren Umgebung unterscheidet [4].

“Die auffällig hohe Rotationsgeschwindigkeit und die ungewöhnliche Bewegung verglichen mit seiner Umgebung haben uns aufmerken lassen. Wir wurden argwöhnisch und haben uns gefragt, ob der Stern eventuell eine besondere Vorgeschichte hatte”, erklärt Philip Dufton von der Queen’s University in Belfast (Nordirland), der Erstautor des Fachartikels, indem die Untersuchungsergebnisse präsentiert werden.

Die Geschwindigkeitsdifferenz von VFTS 102 zu seinen Nachbarsternen deutet darauf hin, dass er ein Ausreißer ist, der aus einem Doppelsternsystem herauskatapultiert wurde. Das dürfte geschehen sein, als sein Partnerstern als Supernova explodierte. Diese These wird durch zwei weitere Indizien unterstützt: In der Nähe befinden sich in der Tat ein Supernovaüberrest und ein Pulsar [5].

Auf diesen Befund gestützt hat das Team eine mögliche Vorgeschichte für den Stern entworfen: Als Mitglied eines Doppelsternsystems, dessen beide Sterne sehr eng umeinander Kreisen, wäre der Stern in einer Situation gewesen, in der sehr schnell Materie von einem Stern zum anderen übertragen werden kann. Durch diesen Massentransfer wäre die Rotation des Sterns schneller und schneller geworden. So ließe sich die extrem hohe Rotationsgeschwindigkeit erklären. Nach einer kurzen Lebensdauer von nur 10 Millionen Jahren wäre der massereiche Begleiter dann als Supernova explodiert.S Die Reste seiner herausgeschleuderten Gashülle bilden den nahe gelegenen Supernovaüberrest. Die Explosion hätte gleichzeitig auch zum Herausschleudern des Sterns geführt und kann damit seine dritte Besonderheit erklären: die große Abweichung seiner Geschwindigkeit von den Geschwindigkeiten der anderen Sterne in seiner Umgebung. Durch den Kollaps des Partnersterns, der zur Supernovaexplosion geführt hätte, wäre aus dem massereichen Begleiter der beobachtete Pulsar geworden, und damit das letzte Puzzlestück des astronomischen Szenarios.

Die Astronomen können nicht sicher sein, dass sich alles wirklich so abgespielt hat. “Dieses Szenario würde sehr gut zu all den ungewöhnlichen Eigenschaften des Sterns und seiner Umgebung passen. Auf jeden Fall zeigen unsere Beobachtungen uns auch die unerwartete Seite des kurzen, aber dramatischen Lebens der massereichsten Sterne”, schließt Dufton.

Endnoten

[1] Die Bezeichnung VFTS102 für den Stern leitet sich vom Namen der Durchmusterung ab, dem VLT-FLAMES Tarantula Survey, die mit dem Fibre Large Array Multi Element Spectrograph (FLAMES) am Very Large Telescope der ESO durchgeführt wurde.

[2] Ein Flugzeug mit dieser Geschwindigkeit würde die Erde entlang des Äquators innerhalb einer Minute umrunden.

[3] Viele Sterne beenden ihr Leben als so genannte kompakte Objekte, beispielsweise als Pulsare (man vergleiche dazu auch [5]), die noch schneller als VFTS 102 rotieren. Solche Objekte sind allerdings viel kleiner und dichter. Außerdem gewinnen sie ihre Energie nicht länger aus Fusionsreaktionen wie normale Sterne.

[4] VFTS 102 bewegt sich mit einer Geschwindigkeit von etwa 228 Kilometern pro Sekunde durch den Raum. Das istrund 40 Kilometer pro Sekunde als die typische Bewegung anderer Sterne in dieser Gegend.

[5] Pulsare entstehen als „Sternleichen“ bei Supernovaexplosionen. Der Kern eines massereichen Sterns fällt dabei in sich zusammen und bildet einen so genannten Neutronenstern von nur wenigen Kilometern Durchmesser. Neutronensterne rotieren sehr schnell. Da sie gleichzeitig energiereiche Strahlenbündel aussenden, sieht man sie von der Erde aus leuchtturmartig aufblitzen. Dieser Lichtpuls gibt der Objektklasse ihren Namen. Der Supernovaüberrest dagegen ist eine Art Explosionswolke, die entsteht, weil die äußeren Schichten des sterbenden Sterns durch die Schockwellen des Kollapses des Sternkerns zum Neutronenstern nach Außen getrieben werden.

Zusatzinformationen

Die hier vorgestellten Forschungsergebnisse von Philip L. Dufton et al. sind vor Kurzem unter dem Titel “The VLT-FLAMES Tarantula Survey: The fastest rotating O-type star and shortest period LMC pulsar — remnants of a supernova disrupted binary?” in der Fachzeitschrift Astrophysical Journal Letters erschienen.

Die beteiligten Wissenschaftler sind P.L. Dufton (Astrophysics Research Centre, Queen’s University Belfast (ARC/QUB), Großbritannien), P.R. Dunstall (ARC/QUB, Großbritannien), C.J. Evans (UK Astronomy Technology Centre, Royal Observatory Edinburgh (ROE), Großbritannien), I. Brott (Universität Wien, Institut für Astronomie, Österreich), M. Cantiello (Argelander Institut für Astronomie der Universitat Bonn und Kavli Institute for Theoretical Physics, University of California, USA), A. de Koter (Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Niederlande), S.E. de Mink (Space Telescope Science Institute, USA), M. Fraser (ARC/QUB, Großbritannien), V. Henault-Brunet (Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, ROE, Großbritannien), I.D. Howarth (Department of Physics & Astronomy, University College London, Großbritannien), N. Langer (Argelander Institut für Astronomie der Universitat Bonn), D.J. Lennon (ESA, Space Telescope Science Institute, USA), N. Markova (Institute of Astronomy with NAO, Bulgarien), H. Sana (Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Niederlande), W.D. Taylor (SUPA, Institute for Astronomy, University of Edinburgh, ROE, Großbritannien).

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org
Philip Dufton
Queen's University of Belfast
Belfast, UK
Tel: +44 028 9097 3552
E-Mail: P.Dufton@qub.ac.uk
Richard Hook
ESO, La Silla, Paranal, E-ELT & Survey Telescopes Press Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
E-Mail: rhook@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics