Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veselago-Linsen: Fehlerfrei fokussiert

14.02.2014
Exotische optische Effekte hat der sowjetische Wissenschaftler Victor Veselago in den 1960er Jahren theoretisch beschrieben: Linsen, die viel genauer abbilden als herkömmliche Gläser.

Physiker der Universität Bonn haben nun weltweit erstmals experimentell nachgewiesen, dass solche Veselago-Linsen auch für Materiewellen möglich sind. Von Anwendungen ist die Wissenschaft noch weit entfernt, doch für die Grundlagenforschung sind die Ergebnisse sehr relevant. Deshalb werden sie nun im renommierten Fachjournal „Nature Communications“ vorgestellt.


Gezeigt ist die anfängliche Ausdehnung der atomaren Materiewellen in zwei Teilstrahlen, die in der Bildmitte refokussiert werden und sich dann weiter rechts wieder treffen.

(c) Foto: Arbeitsgruppe Weitz/Nature Communications

Unter Linsen versteht man gewöhnlich Gläser mit gewölbten Oberflächen, die die parallel einfallenden Lichtstrahlen auf einen Punkt fokussieren und dadurch eine optische Vergrößerung erlauben. Exotischer verhalten sich dagegen Linsen, die der sowjetische Wissenschaftler Victor Veselago erstmals in den 1960er Jahren theoretisch beschrieben hat. Voraussetzung für eine solche Veselago-Linse ist ein negativer Brechungsindex des Linsenmaterials. Diese physikalische Größe beschreibt, wie das Licht an der Grenze von Luft und Medium gebrochen wird. Bei herkömmlichen Linsen ist die Zahl positiv.

„Normalerweise ist die Auflösung von optischen Systemen durch die Wellenlänge des Lichts begrenzt“, sagt Prof. Dr. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn. Dinge, die kleiner als die jeweilige Wellenlänge sind, lassen sich mit dem verwendeten Licht nicht abbilden. Diese Grenze könnte mit Veselago-Linsen unterlaufen werden, hoffen Forscher weltweit. Das könnte zum Beispiel die Entwicklung von viel leistungsfähigeren Computerchips vorantreiben. Manche Wissenschaftler gehen davon aus, dass sich mit Materialien mit negativem Brechungsindex sogar Dinge unsichtbar machen lassen. Forscher versuchten in den vergangenen Jahren, speziell strukturierte Materialien zu entwickeln, die einen negativen Brechungsindex aufweisen. „Für Licht gibt es inzwischen Ansätze, die dem von Veselago vorhergesagten Linseneffekt grundsätzlich zeigen“, berichtet der Physiker der Universität Bonn.

Weltweit die erste Veselago-Linse für Materiewellen

Mit seinem Forschungsteam hat Prof. Weitz nun als erster weltweit experimentell nachgewiesen, das eine Veselago-Linse auch für Materiewellen möglich ist. Licht hat die Eigenschaft, dass es im freien Raum immer die gleiche Ausbreitungsgeschwindigkeit hat: annähernd 300.000 Kilometer pro Sekunde. In dem Experiment kühlten die Physiker der Universität Bonn Rubidium-Atome sehr stark ab und luden sie auf einer Art „Wellpappe“ aus Licht, einem sogenannten optischen Gitter. „Mit den Rubidium-Atomen im optischen Gitter können wir einen Bereich untersuchen, in dem die Atome genauso wie Licht überall die gleiche Ausbreitungsgeschwindigkeit haben“, sagt Martin Leder aus Prof. Weitz Team. Die beträgt hier nur rund einen Zentimeter pro Sekunde, ist also lediglich so schnell wie eine kriechende Schnecke. Nach einer anfänglichen Ausbreitung im optischen Gitter wurden die Atome mit einem optischen Lichtpuls in einen Bereich mit negativem Brechungsindex als Voraussetzung für eine Veselago-Linse gebracht.

Die Physiker der Universität Bonn konnten mit den Rubidium-Atomen den von Veselago theoretisch vorhergesagten Linseneffekt für eine Raumrichtung experimentell nachweisen. Der Traum von neuen Computerchips geht damit aber so schnell noch nicht in Erfüllung: Da die Wissenschaftler bei ihrem Versuchsaufbau mit Laserlicht arbeiteten, war von Anfang an klar, dass sie nicht die Auflösungsgrenze von einer Wellenlänge unterschreiten konnten. Viel wichtiger ist den Physikern jedoch die Bedeutung der Resultate für die Grundlagenforschung. „Die Ergebnisse erlauben neue Einblicke in die Eigenschaften von ultrakalten Materiewellen“, sagt Prof. Weitz. Dadurch ergeben sich neue Möglichkeiten, feine Strukturen und fragile Quantenzustände mit optischen Gittern zu untersuchen.

Publikation: Veselago lensing with ultracold atoms in an optical lattice, Nature Communications, DOI: 10.1038/ncomms4327.

Kontakt:

Prof. Dr. Martin Weitz
Institut für Angewandte Physik
Tel. 0228/734837 oder 734836
E-Mail: martin.weitz@uni-bonn.de
Martin Leder
Institut für Angewandte Physik
Tel. 0228/733459
E-Mail: leder@iap.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Metalle verbinden ohne Schweißen

23.04.2018 | HANNOVER MESSE

Revolutionär: Ein Algensaft deckt täglichen Vitamin-B12-Bedarf

23.04.2018 | Medizin Gesundheit

Wie zerfallen kleinste Bleiteilchen?

23.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics