Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veselago-Linsen: Fehlerfrei fokussiert

14.02.2014
Exotische optische Effekte hat der sowjetische Wissenschaftler Victor Veselago in den 1960er Jahren theoretisch beschrieben: Linsen, die viel genauer abbilden als herkömmliche Gläser.

Physiker der Universität Bonn haben nun weltweit erstmals experimentell nachgewiesen, dass solche Veselago-Linsen auch für Materiewellen möglich sind. Von Anwendungen ist die Wissenschaft noch weit entfernt, doch für die Grundlagenforschung sind die Ergebnisse sehr relevant. Deshalb werden sie nun im renommierten Fachjournal „Nature Communications“ vorgestellt.


Gezeigt ist die anfängliche Ausdehnung der atomaren Materiewellen in zwei Teilstrahlen, die in der Bildmitte refokussiert werden und sich dann weiter rechts wieder treffen.

(c) Foto: Arbeitsgruppe Weitz/Nature Communications

Unter Linsen versteht man gewöhnlich Gläser mit gewölbten Oberflächen, die die parallel einfallenden Lichtstrahlen auf einen Punkt fokussieren und dadurch eine optische Vergrößerung erlauben. Exotischer verhalten sich dagegen Linsen, die der sowjetische Wissenschaftler Victor Veselago erstmals in den 1960er Jahren theoretisch beschrieben hat. Voraussetzung für eine solche Veselago-Linse ist ein negativer Brechungsindex des Linsenmaterials. Diese physikalische Größe beschreibt, wie das Licht an der Grenze von Luft und Medium gebrochen wird. Bei herkömmlichen Linsen ist die Zahl positiv.

„Normalerweise ist die Auflösung von optischen Systemen durch die Wellenlänge des Lichts begrenzt“, sagt Prof. Dr. Martin Weitz vom Institut für Angewandte Physik der Universität Bonn. Dinge, die kleiner als die jeweilige Wellenlänge sind, lassen sich mit dem verwendeten Licht nicht abbilden. Diese Grenze könnte mit Veselago-Linsen unterlaufen werden, hoffen Forscher weltweit. Das könnte zum Beispiel die Entwicklung von viel leistungsfähigeren Computerchips vorantreiben. Manche Wissenschaftler gehen davon aus, dass sich mit Materialien mit negativem Brechungsindex sogar Dinge unsichtbar machen lassen. Forscher versuchten in den vergangenen Jahren, speziell strukturierte Materialien zu entwickeln, die einen negativen Brechungsindex aufweisen. „Für Licht gibt es inzwischen Ansätze, die dem von Veselago vorhergesagten Linseneffekt grundsätzlich zeigen“, berichtet der Physiker der Universität Bonn.

Weltweit die erste Veselago-Linse für Materiewellen

Mit seinem Forschungsteam hat Prof. Weitz nun als erster weltweit experimentell nachgewiesen, das eine Veselago-Linse auch für Materiewellen möglich ist. Licht hat die Eigenschaft, dass es im freien Raum immer die gleiche Ausbreitungsgeschwindigkeit hat: annähernd 300.000 Kilometer pro Sekunde. In dem Experiment kühlten die Physiker der Universität Bonn Rubidium-Atome sehr stark ab und luden sie auf einer Art „Wellpappe“ aus Licht, einem sogenannten optischen Gitter. „Mit den Rubidium-Atomen im optischen Gitter können wir einen Bereich untersuchen, in dem die Atome genauso wie Licht überall die gleiche Ausbreitungsgeschwindigkeit haben“, sagt Martin Leder aus Prof. Weitz Team. Die beträgt hier nur rund einen Zentimeter pro Sekunde, ist also lediglich so schnell wie eine kriechende Schnecke. Nach einer anfänglichen Ausbreitung im optischen Gitter wurden die Atome mit einem optischen Lichtpuls in einen Bereich mit negativem Brechungsindex als Voraussetzung für eine Veselago-Linse gebracht.

Die Physiker der Universität Bonn konnten mit den Rubidium-Atomen den von Veselago theoretisch vorhergesagten Linseneffekt für eine Raumrichtung experimentell nachweisen. Der Traum von neuen Computerchips geht damit aber so schnell noch nicht in Erfüllung: Da die Wissenschaftler bei ihrem Versuchsaufbau mit Laserlicht arbeiteten, war von Anfang an klar, dass sie nicht die Auflösungsgrenze von einer Wellenlänge unterschreiten konnten. Viel wichtiger ist den Physikern jedoch die Bedeutung der Resultate für die Grundlagenforschung. „Die Ergebnisse erlauben neue Einblicke in die Eigenschaften von ultrakalten Materiewellen“, sagt Prof. Weitz. Dadurch ergeben sich neue Möglichkeiten, feine Strukturen und fragile Quantenzustände mit optischen Gittern zu untersuchen.

Publikation: Veselago lensing with ultracold atoms in an optical lattice, Nature Communications, DOI: 10.1038/ncomms4327.

Kontakt:

Prof. Dr. Martin Weitz
Institut für Angewandte Physik
Tel. 0228/734837 oder 734836
E-Mail: martin.weitz@uni-bonn.de
Martin Leder
Institut für Angewandte Physik
Tel. 0228/733459
E-Mail: leder@iap.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie