Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkung auf Distanz gehalten

27.05.2011
Wissenschaftler am Max-Planck-Institut für Quantenoptik erzielen quantenmechanische Verschränkung von zwei räumlich weit getrennten Quantensystemen.

Seit einigen Jahren gibt es konkrete Vorschläge, wie das quantenmechanische Phänomen der Verschränkung, von Albert Einstein auch als „geisterhafte Fernwirkung“ bezeichnet, für praktische Anwendungen wie etwa die abhörsichere Datenübertragung genutzt werden kann.

Dazu ist es notwendig, die aussschließlich lokal entstehende Verschränkung auf weit voneinander entfernte Systeme zu verteilen. Ein Team von Wissenschaftlern um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, hat jetzt demonstriert, dass sich zwei räumlich weit getrennte atomare Quantensysteme – ein einzelnes, in einem optischen Resonator gefangenes Atom und ein sogenanntes Bose-Einstein-Kondensat aus Millionen von ultrakalten Atomen – in einen gemeinsamen verschränkten Zustand bringen lassen (Physical Review Letters, Advance Online Publication, 26. Mai 2011). Mit dem so entstandenen „Hybrid-System“ haben die Forscher den Grundbaustein für ein Quantennetzwerk realisiert.

Bei dem quantenmechanischen Phänomen der Verschränkung werden zwei Quantenteilchen so miteinander verknüpft, dass ihre Eigenschaften streng miteinander korreliert sind. Dazu müssen die Teilchen direkt miteinander in Kontakt kommen. In einem Quantennetzwerk benötigt man jedoch für viele Anwendungen Verschränkung zwischen weit entfernten Knoten (den „ruhenden Quantenbits“). Um dies zu erreichen können zum Beispiel Lichtteilchen, sogenannte Photonen (die „fliegenden Quantenbits“) zur Übertragung der Verschränkung genutzt werden. Schon in der klassischen Telekommunikation werden Daten heutzutage mit Licht zwischen Rechnern oder Telefonen übermittelt. Im Fall eines Quantennetzwerkes ist dies jedoch ungleich schwieriger, da verschränkte Quantenzustände äußerst zerbrechlich sind und nur bestehen bleiben, wenn die beiden Teilchen perfekt von ihrer Umgebung isoliert sind.

Diese Hürde haben die Garchinger Physiker jetzt genommen, indem sie zwei unterschiedliche, in verschiedenen Laborräumen befindliche atomare Quantensysteme in einen verschränkten Zustand brachten: auf der einen Seite ein einzelnes Rubidiumatom, das in einem aus zwei hochreflektierenden Spiegeln gebildeten Resonator gefangen ist, auf der anderen Seite ein Ensemble aus Millionen extrem kalten Rubidiumatomen, die ein so genanntes Bose-Einstein-Kondensat (BEC) bilden. Im BEC besitzen alle Teilchen die gleichen Quanteneigenschaften, sind ununterscheidbar und verhalten sich gemeinsam wie ein einziges großes „Superatom“.

Zunächst wird das einzelne Atom im optischen Resonator mit einem Laserpuls zum Aussenden eines Photons angeregt. Dabei werden innere Freiheitsgrade des Atoms so mit der Polarisation des Photons verknüpft, dass beide Teilchen miteinander verschränkt sind. Über ein 30 Meter langes Glasfaserkabel wird das Photon in ein benachbartes Labor überführt und dort auf das BEC gelenkt. Hier wird es absorbiert und in Form einer kollektiven Anregung aller Atome des BECs gespeichert. „Der Austausch von Quanteninformation zwischen Photonen und atomaren Quantensystemen erfordert eine starke Licht-Materie-Wechselwirkung“, erklärt Matthias Lettner, Doktorand am Experiment. „Während wir dies beim einzelnen Atom durch die Vielfachreflexionen zwischen den beiden Spiegeln des Resonators erreichen, wird die Licht-Materie-Wechselwirkung beim BEC durch die große Zahl an Atomen verstärkt.“

Dass Einzelatom und BEC durch die Übertragung des Photons wirklich miteinander verschränkt sind, weisen die Physiker in einem weiteren Schritt nach. Dazu wird mithilfe eines Laserpulses das im BEC absorbierte Photon wieder freigesetzt und der Zustand des Einzelatoms durch die Erzeugung eines zweiten Photons ausgelesen. Aus der Verschränkung der beiden Photonen mit 95% des maximal möglichen Wertes lässt sich schließen, dass die Verschränkung der beiden atomaren Quantensysteme mindestens ebenso gut ist. Des Weiteren besteht die Verschränkung rund 100 Mikrosekunden lang. Das ist hundert Mal länger als der Übertragungsprozess dauert.

„Die gute Eignung eines BEC als Quantenspeicher hängt auch damit zusammen, dass in diesem exotischen Quantenzustand keine Störungen durch Wärmebewegung auftreten“, betont Matthias Lettner. „Dies ermöglicht es, Quanteninformation mit hoher Effizienz abzuspeichern und auszulesen sowie über lange Zeiten zu erhalten.“

Das Team von Prof. Rempe hat in diesem Experiment den Grundbaustein eines Quantennetzwerks aus zwei weit entfernten, miteinander verschränkten Knoten realisiert. Dies ist ein Meilenstein auf dem Weg zu ausgedehnten Quantennetzwerken, in denen z.B. Information absolut abhörsicher übertragen werden kann. Aber auch universelle Quantencomputer, in denen Quantenbits mit Photonen zwischen den Knoten ausgetauscht und dort gespeichert und verarbeitet werden, lassen sich mit solchen Netzwerken verwirklichen.

Originalveröffentlichung:

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe
“Remote Entanglement between a Single Atom and a Bose-Einstein Condensate”
Physical Review Letters, Advance Online Publication, 26. Mai 2011
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 - 701
Fax: +49 89 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Matthias Lettner
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 32905 - 245
E-Mail: matthias.lettner@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel: +49 89 32905 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie