Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkung auf Distanz gehalten

27.05.2011
Wissenschaftler am Max-Planck-Institut für Quantenoptik erzielen quantenmechanische Verschränkung von zwei räumlich weit getrennten Quantensystemen.

Seit einigen Jahren gibt es konkrete Vorschläge, wie das quantenmechanische Phänomen der Verschränkung, von Albert Einstein auch als „geisterhafte Fernwirkung“ bezeichnet, für praktische Anwendungen wie etwa die abhörsichere Datenübertragung genutzt werden kann.

Dazu ist es notwendig, die aussschließlich lokal entstehende Verschränkung auf weit voneinander entfernte Systeme zu verteilen. Ein Team von Wissenschaftlern um Prof. Gerhard Rempe, Direktor am Max-Planck-Institut für Quantenoptik und Leiter der Abteilung Quantendynamik, hat jetzt demonstriert, dass sich zwei räumlich weit getrennte atomare Quantensysteme – ein einzelnes, in einem optischen Resonator gefangenes Atom und ein sogenanntes Bose-Einstein-Kondensat aus Millionen von ultrakalten Atomen – in einen gemeinsamen verschränkten Zustand bringen lassen (Physical Review Letters, Advance Online Publication, 26. Mai 2011). Mit dem so entstandenen „Hybrid-System“ haben die Forscher den Grundbaustein für ein Quantennetzwerk realisiert.

Bei dem quantenmechanischen Phänomen der Verschränkung werden zwei Quantenteilchen so miteinander verknüpft, dass ihre Eigenschaften streng miteinander korreliert sind. Dazu müssen die Teilchen direkt miteinander in Kontakt kommen. In einem Quantennetzwerk benötigt man jedoch für viele Anwendungen Verschränkung zwischen weit entfernten Knoten (den „ruhenden Quantenbits“). Um dies zu erreichen können zum Beispiel Lichtteilchen, sogenannte Photonen (die „fliegenden Quantenbits“) zur Übertragung der Verschränkung genutzt werden. Schon in der klassischen Telekommunikation werden Daten heutzutage mit Licht zwischen Rechnern oder Telefonen übermittelt. Im Fall eines Quantennetzwerkes ist dies jedoch ungleich schwieriger, da verschränkte Quantenzustände äußerst zerbrechlich sind und nur bestehen bleiben, wenn die beiden Teilchen perfekt von ihrer Umgebung isoliert sind.

Diese Hürde haben die Garchinger Physiker jetzt genommen, indem sie zwei unterschiedliche, in verschiedenen Laborräumen befindliche atomare Quantensysteme in einen verschränkten Zustand brachten: auf der einen Seite ein einzelnes Rubidiumatom, das in einem aus zwei hochreflektierenden Spiegeln gebildeten Resonator gefangen ist, auf der anderen Seite ein Ensemble aus Millionen extrem kalten Rubidiumatomen, die ein so genanntes Bose-Einstein-Kondensat (BEC) bilden. Im BEC besitzen alle Teilchen die gleichen Quanteneigenschaften, sind ununterscheidbar und verhalten sich gemeinsam wie ein einziges großes „Superatom“.

Zunächst wird das einzelne Atom im optischen Resonator mit einem Laserpuls zum Aussenden eines Photons angeregt. Dabei werden innere Freiheitsgrade des Atoms so mit der Polarisation des Photons verknüpft, dass beide Teilchen miteinander verschränkt sind. Über ein 30 Meter langes Glasfaserkabel wird das Photon in ein benachbartes Labor überführt und dort auf das BEC gelenkt. Hier wird es absorbiert und in Form einer kollektiven Anregung aller Atome des BECs gespeichert. „Der Austausch von Quanteninformation zwischen Photonen und atomaren Quantensystemen erfordert eine starke Licht-Materie-Wechselwirkung“, erklärt Matthias Lettner, Doktorand am Experiment. „Während wir dies beim einzelnen Atom durch die Vielfachreflexionen zwischen den beiden Spiegeln des Resonators erreichen, wird die Licht-Materie-Wechselwirkung beim BEC durch die große Zahl an Atomen verstärkt.“

Dass Einzelatom und BEC durch die Übertragung des Photons wirklich miteinander verschränkt sind, weisen die Physiker in einem weiteren Schritt nach. Dazu wird mithilfe eines Laserpulses das im BEC absorbierte Photon wieder freigesetzt und der Zustand des Einzelatoms durch die Erzeugung eines zweiten Photons ausgelesen. Aus der Verschränkung der beiden Photonen mit 95% des maximal möglichen Wertes lässt sich schließen, dass die Verschränkung der beiden atomaren Quantensysteme mindestens ebenso gut ist. Des Weiteren besteht die Verschränkung rund 100 Mikrosekunden lang. Das ist hundert Mal länger als der Übertragungsprozess dauert.

„Die gute Eignung eines BEC als Quantenspeicher hängt auch damit zusammen, dass in diesem exotischen Quantenzustand keine Störungen durch Wärmebewegung auftreten“, betont Matthias Lettner. „Dies ermöglicht es, Quanteninformation mit hoher Effizienz abzuspeichern und auszulesen sowie über lange Zeiten zu erhalten.“

Das Team von Prof. Rempe hat in diesem Experiment den Grundbaustein eines Quantennetzwerks aus zwei weit entfernten, miteinander verschränkten Knoten realisiert. Dies ist ein Meilenstein auf dem Weg zu ausgedehnten Quantennetzwerken, in denen z.B. Information absolut abhörsicher übertragen werden kann. Aber auch universelle Quantencomputer, in denen Quantenbits mit Photonen zwischen den Knoten ausgetauscht und dort gespeichert und verarbeitet werden, lassen sich mit solchen Netzwerken verwirklichen.

Originalveröffentlichung:

M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe
“Remote Entanglement between a Single Atom and a Bose-Einstein Condensate”
Physical Review Letters, Advance Online Publication, 26. Mai 2011
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 - 701
Fax: +49 89 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Matthias Lettner
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 32905 - 245
E-Mail: matthias.lettner@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel: +49 89 32905 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie