Verschränkte Photonenpaare aus Quantenpunkten

Mit einem gepulsten Laser (rot) werden in Quantenpunkten gezielt einzelne Photonenpaare erzeugt. Uni Innsbruck

Die Quantenkommunikation über globale Glasfasernetzwerke ist auf verlässliche Träger für Quanteninformation angewiesen. Dafür werden gut kontrollierbare Photonenquellen benötigt. Forscher aus aller Welt arbeiten derzeit an entsprechenden Lösungen.

Heute gängige Quellen aus Halbleiterkristallen erzeugen die Lichtteilchen relativ unkontrolliert, auch sind die bisher verwendeten Einzelphotonenquellen mit hohem technischem Aufwand verbunden. Die von Forschern der Universität Innsbruck verwendete Methode zu Erzeugung von Photonenpaaren in Quantenpunkten ist demgegenüber sehr gut kontrollierbar und deutlich weniger aufwändig.

Das Team um Gregor Weihs vom Institut für Experimentalphysik nutzt einen Quantenpunkt aus Indiumarsenid. Diese Halbleiterstruktur ist nur einige Millionstel Millimeter groß und verhält sich bei Kühlung mit flüssigem Helium wie ein künstliches Atom, welches man aber nicht erst fangen muss. Mit einem gepulsten Laser regen die Physiker den Quantenpunkt an.

„Nach jeder Anregung sendet der Quantenpunkt zwei Photonen mit leicht unterschiedlicher Wellenlänge aus“, erklärt Gregor Weihs. „Jeder Anregung gehen zwei Pulse des Lasers voraus, die emittierten Photonen schicken wir über zwei unterschiedlich lange Arme eines Interferometers und messen sie am Ende mit Hilfe von Detektoren.“

An diesem Punkt ist es für den Beobachter nicht mehr entscheidbar, ob die zwei Photonen vom ersten oder zweiten Laserpuls erzeugt und über den kurzen oder langen Arm des Interferometers gesendet wurden. „Damit sind die beiden zeitlichen Zustände der Photonen miteinander verschränkt“, sagt Gregor Weihs.

Für Anwendungen in der Quantenkommunikation ist dies überaus nützlich: Die zeitlichen Zustände finden im Kommunikationskanal praktisch identische Bedingungen vor, weil sie zeitlich extrem knapp hintereinander transportiert werden. Nur Veränderungen im Nanosekundenbereich würden die Lichtteilchen unterschiedlich beeinflussen.

„Wesentlich ist aber vor allem, dass wir gegenüber anderen Verfahren die Photonenpaare sehr kontrolliert erzeugen können“, betont Gregor Weihs. So können Quantenrepeater zum Beispiel nur einzeln erzeugte Photonenpaare verarbeiten, um Quanteninformation über lange Strecken zu übertragen. Weitere mögliche Einsatzgebiete sind die Quantenkryptografie oder optische Quantencomputer.

„Noch sind wir allerdings nicht ganz am Ziel“, blickt Physiker Weihs bereits in die Zukunft. „Derzeit kommt es vor, dass unsere Quelle noch zwei Photonenpaare gleichzeitig produziert. Aber auch dafür gibt es bereits Ideen.“

Publikation: Time-bin entangled photons from a quantum dot. Harishankar Jayakumar, Ana Predojevic, Thomas Kauten, Tobias Huber, Glenn S. Solomon, and Gregor Weihs. Nature Communications 2014 DOI: 10.1038/ncomms5251 (arXiv:1305.2081v2)

Rückfragehinweis
Univ.-Prof. Dr. Gregor Weihs
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 52550
E-Mail: gregor.weihs@uibk.ac.at
Web: http://www.uibk.ac.at/exphys/photonik

Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

http://dx.doi.org/10.1038/ncomms5251 – Time-bin entangled photons from a quantum dot. Harishankar Jayakumar, Ana Predojevic, Thomas Kauten, Tobias Huber, Glenn S. Solomon, and Gregor Weihs. Nature Communications 2014
http://arxiv.org/abs/1305.2081v2 – arXiv:1305.2081v2
http://www.uibk.ac.at/exphys/photonik – Arbeitsgruppe Photonik

Media Contact

Dr. Christian Flatz Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer