Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkte Atome überwinden Grenzen der Messgenauigkeit

04.10.2013
Atominterferometer gehören zu den präzisesten Instrumenten, um Gravitation, elektromagnetische Felder und andere fundamentale Grössen zu messen. Ihre Genauigkeit ist jedoch durch Quantenrauschen begrenzt.

Physikern der Universität Basel ist es nun gelungen, das Rauschen mittels verschränkter Quantenteilchen zu verringern und so ein elektromagnetisches Feld mit einer Präzision jenseits des Standard-Quantenlimits zu vermessen. Über die Studie berichtet das Fachmagazin «Physical Review Letters» in seiner aktuellen Ausgabe.


Eine Wolke von verschränkten Atomen (blau) ermöglicht hochauflösende Messungen elektromagnetischer Felder in der Nähe eines Mikrochips.

Bild: Caspar Ockeloen/Philipp Treutlein, Universität Basel

In der Quantenphysik ist der Zufall ein wesentliches Prinzip der Natur. Das Ergebnis einer Messung an einem mikroskopischen Teilchen lässt sich nicht genau, sondern lediglich mit einer gewissen Wahrscheinlichkeit vorhersagen. Diese Zufälligkeit ist nicht nur eine Herausforderung für unser Weltbild, sondern hat auch ganz praktische Auswirkungen: sie begrenzt die Präzision von Atominterferometern, die zu den empfindlichsten Messinstrumenten gehören, die es derzeit gibt.

Um beispielsweise den Wert eines elektromagnetischen Feldes präzise zu bestimmen, müssen die Messergebnisse einer grossen Zahl von Atomen gemittelt werden. Durch die Mittelung werden die zufälligen Schwankungen zwar stark verringert, aber nicht vollständig eliminiert. Das verbleibende «Quantenrauschen» und die damit verbundene Begrenzung der Messgenauigkeit bezeichnet man als Standard-Quantenlimit der Interferometrie.

Weniger Rauschen durch verschränkte Atome
Forschern der Universität Basel in der Arbeitsgruppe von Prof. Philipp Treutlein ist es nun gelungen, das Quantenrauschen in einem Atominterferometer zu verringern und so die Präzision der Messung zu erhöhen. Dazu machten sich die Physiker einen weiteren quantenmechanischen Effekt zunutze, die sogenannte Verschränkung.

Während Atome in einem gewöhnlichen Interferometer voneinander unabhängig sind – das Messresultat eines Atoms wird durch die anderen Atome nicht beeinflusst – so verhalten sich miteinander verschränkte Atome als eine kollektive Einheit. Das Quantenrauschen der einzelnen Atome ist korreliert und kann durch geschickte Wahl des Messverfahrens unter das Standard-Quantenlimit gedrückt werden.

«Wir erzeugen den verschränkten Zustand, indem wir Atome sehr kontrolliert miteinander kollidieren lassen», erklärt Caspar Ockeloen, der das Experiment im Rahmen seiner Doktorarbeit durchgeführt hat. «Danach bestrahlen wir die Atome mit Mikrowellen, um die interferometrische Messung durchzuführen.» Am Ende der Messung beobachten die Forscher ein Quantenrauschen, das um einen Faktor 1,6 kleiner ist als das Standard-Quantenlimit.

Auf dem Weg zur Quantentechnologie
Als erste Anwendung haben die Forscher ein Mikrowellenfeld in der Nähe der Oberfläche eines Mikrochips vermessen. Die dabei erzielte Präzision übersteigt die bisheriger Messverfahren um mehrere Grössenordnungen. Solche hochauflösenden elektromagnetischen Feldmessungen könnten zum Beispiel für das Testen von integrierten Schaltkreisen für die Kommunkationstechnologie von Interesse sein, wie man sie in Mobiltelefonen und Computern findet.

Technologische Anwendungen quantenphysikalischer Effekte werden weltweit von einer wachsenden Zahl von Forschungsgruppen untersucht. Verbesserte Atominterferometer und andere Präzisionsmessinstrumente sind ein Beispiel für eine solche Quantentechnologie.

Verschränkung besser verstehen
Neben technologischen Anwendungen erhoffen sich die Wissenschaftler von ihren Experimenten auch ein besseres Verständnis des Phänomens der Verschränkung. «Verschränkung ist eines der faszinierendsten Phänomene der Physik – Albert Einstein hat sie einmal als ‹spukhafte Fernwirkung› bezeichnet», erläutert Dr. Roman Schmied, einer der Koautoren der Studie. «Über ein halbes Jahrhundert später gibt es immer noch viele offene Fragen, wie man Verschränkung quantifiziert und nachweist.» In ihren Experimenten haben die Basler Forscher daher auch eine genaue Charakterisierung des verschränkten Quantenzustands der Atome mittels tomographischer Methoden vorgenommen.

Die Arbeit wurde im Rahmen des Forschungsschwerpunkts Nano- und Quantenphysik im Departement Physik der Universität Basel durchgeführt und vom Schweizer Nationalfonds sowie der Europäischen Union gefördert.

Originalbeitrag
Caspar F. Ockeloen, Roman Schmied, Max F. Riedel, and Philipp Treutlein
Quantum Metrology with a Scanning Probe Atom Interferometer
Physical Review Letters; published 3 October 2013 | doi: 10.1103/PhysRevLett.111.143001
Weitere Auskünfte
Prof. Dr. Philipp Treutlein, Universität Basel, Departement Physik, Klingelbergstrasse 82, 4056 Basel, Tel. +41 (0)61 267 37 66, E-Mail: philipp.treutlein@unibas.ch

Weitere Informationen:

http://prl.aps.org/abstract/PRL/v111/i14/e143001 - Abstract
http://atom.physik.unibas.ch/ - Forschungsgruppe Prof. Philipp Treutlein >

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie