Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkte Atome überwinden Grenzen der Messgenauigkeit

04.10.2013
Atominterferometer gehören zu den präzisesten Instrumenten, um Gravitation, elektromagnetische Felder und andere fundamentale Grössen zu messen. Ihre Genauigkeit ist jedoch durch Quantenrauschen begrenzt.

Physikern der Universität Basel ist es nun gelungen, das Rauschen mittels verschränkter Quantenteilchen zu verringern und so ein elektromagnetisches Feld mit einer Präzision jenseits des Standard-Quantenlimits zu vermessen. Über die Studie berichtet das Fachmagazin «Physical Review Letters» in seiner aktuellen Ausgabe.


Eine Wolke von verschränkten Atomen (blau) ermöglicht hochauflösende Messungen elektromagnetischer Felder in der Nähe eines Mikrochips.

Bild: Caspar Ockeloen/Philipp Treutlein, Universität Basel

In der Quantenphysik ist der Zufall ein wesentliches Prinzip der Natur. Das Ergebnis einer Messung an einem mikroskopischen Teilchen lässt sich nicht genau, sondern lediglich mit einer gewissen Wahrscheinlichkeit vorhersagen. Diese Zufälligkeit ist nicht nur eine Herausforderung für unser Weltbild, sondern hat auch ganz praktische Auswirkungen: sie begrenzt die Präzision von Atominterferometern, die zu den empfindlichsten Messinstrumenten gehören, die es derzeit gibt.

Um beispielsweise den Wert eines elektromagnetischen Feldes präzise zu bestimmen, müssen die Messergebnisse einer grossen Zahl von Atomen gemittelt werden. Durch die Mittelung werden die zufälligen Schwankungen zwar stark verringert, aber nicht vollständig eliminiert. Das verbleibende «Quantenrauschen» und die damit verbundene Begrenzung der Messgenauigkeit bezeichnet man als Standard-Quantenlimit der Interferometrie.

Weniger Rauschen durch verschränkte Atome
Forschern der Universität Basel in der Arbeitsgruppe von Prof. Philipp Treutlein ist es nun gelungen, das Quantenrauschen in einem Atominterferometer zu verringern und so die Präzision der Messung zu erhöhen. Dazu machten sich die Physiker einen weiteren quantenmechanischen Effekt zunutze, die sogenannte Verschränkung.

Während Atome in einem gewöhnlichen Interferometer voneinander unabhängig sind – das Messresultat eines Atoms wird durch die anderen Atome nicht beeinflusst – so verhalten sich miteinander verschränkte Atome als eine kollektive Einheit. Das Quantenrauschen der einzelnen Atome ist korreliert und kann durch geschickte Wahl des Messverfahrens unter das Standard-Quantenlimit gedrückt werden.

«Wir erzeugen den verschränkten Zustand, indem wir Atome sehr kontrolliert miteinander kollidieren lassen», erklärt Caspar Ockeloen, der das Experiment im Rahmen seiner Doktorarbeit durchgeführt hat. «Danach bestrahlen wir die Atome mit Mikrowellen, um die interferometrische Messung durchzuführen.» Am Ende der Messung beobachten die Forscher ein Quantenrauschen, das um einen Faktor 1,6 kleiner ist als das Standard-Quantenlimit.

Auf dem Weg zur Quantentechnologie
Als erste Anwendung haben die Forscher ein Mikrowellenfeld in der Nähe der Oberfläche eines Mikrochips vermessen. Die dabei erzielte Präzision übersteigt die bisheriger Messverfahren um mehrere Grössenordnungen. Solche hochauflösenden elektromagnetischen Feldmessungen könnten zum Beispiel für das Testen von integrierten Schaltkreisen für die Kommunkationstechnologie von Interesse sein, wie man sie in Mobiltelefonen und Computern findet.

Technologische Anwendungen quantenphysikalischer Effekte werden weltweit von einer wachsenden Zahl von Forschungsgruppen untersucht. Verbesserte Atominterferometer und andere Präzisionsmessinstrumente sind ein Beispiel für eine solche Quantentechnologie.

Verschränkung besser verstehen
Neben technologischen Anwendungen erhoffen sich die Wissenschaftler von ihren Experimenten auch ein besseres Verständnis des Phänomens der Verschränkung. «Verschränkung ist eines der faszinierendsten Phänomene der Physik – Albert Einstein hat sie einmal als ‹spukhafte Fernwirkung› bezeichnet», erläutert Dr. Roman Schmied, einer der Koautoren der Studie. «Über ein halbes Jahrhundert später gibt es immer noch viele offene Fragen, wie man Verschränkung quantifiziert und nachweist.» In ihren Experimenten haben die Basler Forscher daher auch eine genaue Charakterisierung des verschränkten Quantenzustands der Atome mittels tomographischer Methoden vorgenommen.

Die Arbeit wurde im Rahmen des Forschungsschwerpunkts Nano- und Quantenphysik im Departement Physik der Universität Basel durchgeführt und vom Schweizer Nationalfonds sowie der Europäischen Union gefördert.

Originalbeitrag
Caspar F. Ockeloen, Roman Schmied, Max F. Riedel, and Philipp Treutlein
Quantum Metrology with a Scanning Probe Atom Interferometer
Physical Review Letters; published 3 October 2013 | doi: 10.1103/PhysRevLett.111.143001
Weitere Auskünfte
Prof. Dr. Philipp Treutlein, Universität Basel, Departement Physik, Klingelbergstrasse 82, 4056 Basel, Tel. +41 (0)61 267 37 66, E-Mail: philipp.treutlein@unibas.ch

Weitere Informationen:

http://prl.aps.org/abstract/PRL/v111/i14/e143001 - Abstract
http://atom.physik.unibas.ch/ - Forschungsgruppe Prof. Philipp Treutlein >

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie