Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkte Atome überwinden Grenzen der Messgenauigkeit

04.10.2013
Atominterferometer gehören zu den präzisesten Instrumenten, um Gravitation, elektromagnetische Felder und andere fundamentale Grössen zu messen. Ihre Genauigkeit ist jedoch durch Quantenrauschen begrenzt.

Physikern der Universität Basel ist es nun gelungen, das Rauschen mittels verschränkter Quantenteilchen zu verringern und so ein elektromagnetisches Feld mit einer Präzision jenseits des Standard-Quantenlimits zu vermessen. Über die Studie berichtet das Fachmagazin «Physical Review Letters» in seiner aktuellen Ausgabe.


Eine Wolke von verschränkten Atomen (blau) ermöglicht hochauflösende Messungen elektromagnetischer Felder in der Nähe eines Mikrochips.

Bild: Caspar Ockeloen/Philipp Treutlein, Universität Basel

In der Quantenphysik ist der Zufall ein wesentliches Prinzip der Natur. Das Ergebnis einer Messung an einem mikroskopischen Teilchen lässt sich nicht genau, sondern lediglich mit einer gewissen Wahrscheinlichkeit vorhersagen. Diese Zufälligkeit ist nicht nur eine Herausforderung für unser Weltbild, sondern hat auch ganz praktische Auswirkungen: sie begrenzt die Präzision von Atominterferometern, die zu den empfindlichsten Messinstrumenten gehören, die es derzeit gibt.

Um beispielsweise den Wert eines elektromagnetischen Feldes präzise zu bestimmen, müssen die Messergebnisse einer grossen Zahl von Atomen gemittelt werden. Durch die Mittelung werden die zufälligen Schwankungen zwar stark verringert, aber nicht vollständig eliminiert. Das verbleibende «Quantenrauschen» und die damit verbundene Begrenzung der Messgenauigkeit bezeichnet man als Standard-Quantenlimit der Interferometrie.

Weniger Rauschen durch verschränkte Atome
Forschern der Universität Basel in der Arbeitsgruppe von Prof. Philipp Treutlein ist es nun gelungen, das Quantenrauschen in einem Atominterferometer zu verringern und so die Präzision der Messung zu erhöhen. Dazu machten sich die Physiker einen weiteren quantenmechanischen Effekt zunutze, die sogenannte Verschränkung.

Während Atome in einem gewöhnlichen Interferometer voneinander unabhängig sind – das Messresultat eines Atoms wird durch die anderen Atome nicht beeinflusst – so verhalten sich miteinander verschränkte Atome als eine kollektive Einheit. Das Quantenrauschen der einzelnen Atome ist korreliert und kann durch geschickte Wahl des Messverfahrens unter das Standard-Quantenlimit gedrückt werden.

«Wir erzeugen den verschränkten Zustand, indem wir Atome sehr kontrolliert miteinander kollidieren lassen», erklärt Caspar Ockeloen, der das Experiment im Rahmen seiner Doktorarbeit durchgeführt hat. «Danach bestrahlen wir die Atome mit Mikrowellen, um die interferometrische Messung durchzuführen.» Am Ende der Messung beobachten die Forscher ein Quantenrauschen, das um einen Faktor 1,6 kleiner ist als das Standard-Quantenlimit.

Auf dem Weg zur Quantentechnologie
Als erste Anwendung haben die Forscher ein Mikrowellenfeld in der Nähe der Oberfläche eines Mikrochips vermessen. Die dabei erzielte Präzision übersteigt die bisheriger Messverfahren um mehrere Grössenordnungen. Solche hochauflösenden elektromagnetischen Feldmessungen könnten zum Beispiel für das Testen von integrierten Schaltkreisen für die Kommunkationstechnologie von Interesse sein, wie man sie in Mobiltelefonen und Computern findet.

Technologische Anwendungen quantenphysikalischer Effekte werden weltweit von einer wachsenden Zahl von Forschungsgruppen untersucht. Verbesserte Atominterferometer und andere Präzisionsmessinstrumente sind ein Beispiel für eine solche Quantentechnologie.

Verschränkung besser verstehen
Neben technologischen Anwendungen erhoffen sich die Wissenschaftler von ihren Experimenten auch ein besseres Verständnis des Phänomens der Verschränkung. «Verschränkung ist eines der faszinierendsten Phänomene der Physik – Albert Einstein hat sie einmal als ‹spukhafte Fernwirkung› bezeichnet», erläutert Dr. Roman Schmied, einer der Koautoren der Studie. «Über ein halbes Jahrhundert später gibt es immer noch viele offene Fragen, wie man Verschränkung quantifiziert und nachweist.» In ihren Experimenten haben die Basler Forscher daher auch eine genaue Charakterisierung des verschränkten Quantenzustands der Atome mittels tomographischer Methoden vorgenommen.

Die Arbeit wurde im Rahmen des Forschungsschwerpunkts Nano- und Quantenphysik im Departement Physik der Universität Basel durchgeführt und vom Schweizer Nationalfonds sowie der Europäischen Union gefördert.

Originalbeitrag
Caspar F. Ockeloen, Roman Schmied, Max F. Riedel, and Philipp Treutlein
Quantum Metrology with a Scanning Probe Atom Interferometer
Physical Review Letters; published 3 October 2013 | doi: 10.1103/PhysRevLett.111.143001
Weitere Auskünfte
Prof. Dr. Philipp Treutlein, Universität Basel, Departement Physik, Klingelbergstrasse 82, 4056 Basel, Tel. +41 (0)61 267 37 66, E-Mail: philipp.treutlein@unibas.ch

Weitere Informationen:

http://prl.aps.org/abstract/PRL/v111/i14/e143001 - Abstract
http://atom.physik.unibas.ch/ - Forschungsgruppe Prof. Philipp Treutlein >

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Nanoinjektion steigert Überlebensrate von Zellen
22.02.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

Luftfahrt der Zukunft

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

In Deutschland wächst die Zahl der Patienten mit Diabetes mellitus

23.02.2017 | Medizin Gesundheit

Viren unterstützen Fotosynthese bei Bakterien – Vorteil in der Evolution?

23.02.2017 | Biowissenschaften Chemie

Katalyse in der Maus

23.02.2017 | Biowissenschaften Chemie