Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verrückte Spektroskopie trickst Quantenphysik aus

08.07.2011
Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie haben eine neuartige spektroskopische Methode entwickelt, welche die gleichzeitige Messung mehrerer Moleküleigenschaften erlaubt.

Sie tricksen damit die Gesetzmäßigkeiten der Quantenphysik aus, die besagen, dass man ein System nicht beobachten kann, ohne es zu verändern. Sie berichten über ihre Arbeit in der aktuellen Ausgabe (7.7.2011) von Science Express.

Verschiedene Materialeigenschaften gleichzeitig zu betrachten, ist in unserem Alltag selbstverständlich: Bereits ein kleines Kind kann Bauklötze nach Farbe und Form gleichzeitig sortieren. In der Welt der Atome und Moleküle ist das nicht so einfach möglich, denn eine Gesetzmäßigkeit der Quantenphysik besagt, dass man eine Eigenschaft nicht messen kann ohne sie zu verändern.

Um Eigenschaften von Molekülen zu bestimmen, steht Wissenschaftlern heute eine Vielzahl an spektroskopischen Methoden zu Verfügung. So lassen sich beispielsweise mit der Rotationsspektroskopie molekulare Strukturen voneinander unterscheiden, weil Moleküle mit charakteristischen Frequenzen rotieren. Die Analyse mit einem Massenspektrometer „wiegt“ Moleküle und ihre Bruchstücke und gibt so Auskunft über ihre atomare Zusammensetzung. Solche Messungen konnten Forscher bislang nur einzeln oder nacheinander durchführen, jedoch nicht gleichzeitig. Die von Forschern des Max-Born-Instituts (MBI) entwickelte Correlated Rotational Alignment Spectroscopy, kurz CRASY, erlaubt es nun, verknüpfte („correlated“) Eigenschaften von molekularer Struktur und atomarer Zusammensetzung über Rotations- und Massenspektroskopie gleichzeitig zu bestimmen.

Die Forscher bedienen sich dazu eines experimentellen Tricks: Sie regen die Moleküle zunächst mit einem ultrakurzen Laserimpuls zum Rotieren an. Zeitversetzt schicken sie einen zweiten Laserpuls hinterher, der aus dem Molekül ein Elektron herausschießt, das Molekül also ionisiert. Die Drehung des Moleküls im Raum („rotational alignment“) beeinflusst die Wahrscheinlichkeit, mit der es ionisiert wird. Dieses Experiment wiederholen die Forscher vielfach, wobei die Moleküle unterschiedlich viel Zeit zum Rotieren haben. Auf diese Weise wird die Rotationsbewegung der Moleküle auf die Anzahl erzeugter Ionen und Elektronen abgebildet. Das Gewicht der entstehenden Molekülionen wird mit einem Massenspektrometer bestimmt, die Rotationsfrequenz lässt sich dann aus der zeitabhängigen Anzahl ionisierter Moleküle berechnen. Die Forscher überlisten so die Grenzen der einzelnen spektroskopischen Methoden und erhalten gekoppelte Informationen über Struktur und Masse.

„Mit CRASY bekommen wir viel mehr Informationen als mit herkömmlichen Methoden, denn wenn man zwei Moleküleigenschaften gleichzeitig misst, verdoppelt sich der Informationsgehalt nicht nur, sondern er steigt ins Quadrat“, sagt Dr. Thomas Schultz vom MBI. Dies erlaube die Untersuchung von komplexeren Systemen. Die Forscher haben mit ihrer Methode zunächst die Rotationskonstanten für zehn stabile Isotope einer natürlichen Kohlenstoffdisulfid-Probe (CS2) ermittelt. Mit einem einzigen Experiment erfassten sie damit alle bekannten und drei bislang unbekannte Molekülkonstanten. „Im Unterschied zu herkömmlicher Rotationsspektroskopie brauchen wir dazu nur wenig Material und unsere Proben können auch verunreinigt sein“, so Schultz weiter. In der Zukunft wollen die Forscher diese Technik einsetzen, um Reaktionen in komplexen Biomolekülen, wie etwa DNA-Basen, zu verstehen. Die experimentelle Technik kann auch mit anderen spektroskopischen Methoden verknüpft werden.

www.sciencexpress.org

Kontakt:
Dr. Thomas Schultz, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 6392 1240, schultz@mbi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.sciencexpress.org
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie