Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verdrehtes Röntgenlicht verrät Spinwellen

21.03.2014

Schlaue Radarfalle für Atome ermöglicht Untersuchung der Magnetspeicher von morgen

Eine neuartige Radarfalle für Atome kann bisher nicht sichtbare Details der magnetischen Dynamik von Materialien beobachten. Das von DESY-Forscher Prof. Ralf Röhlsberger vorgeschlagene Konzept erweitert die Möglichkeiten der sogenannten inelastischen Röntgenspektroskopie. Es lässt sich insbesondere zur Beobachtung von wellenförmigen Anregungen in magnetischen Materialien einsetzen, sogenannten Spinwellen.


Linear polarisiertes Röntgenlicht (grün) trifft auf die Probe (rot), wo eine Spinwelle die Polarisation in eine spiralförmige Präzession versetzt, die von einem Polarisator (rechts) analysiert wird.

Bild: Ralf Röhlsberger/DESY

Das Messprinzip, das diese Woche im Fachjournal "Physical Review Letters" vorgestellt wird, umgeht Probleme bisher vorhandener Analysemethoden und könnte mittelfristig sogar erlauben, mit einem einzigen Röntgenblitz die ganze magnetische Dynamik eines Systems zu erfassen. So können beispielsweise schnelle Schaltprozesse in magnetischen Speichern der Zukunft untersucht werden.

Strahlt man Röntgenlicht auf Atome, die sich in Bewegung befinden, ändert sich bei der Streuung der Strahlung an diesen Atomen die Energie und damit die Wellenlänge des Lichts. Auf diesem Prinzip, dem sogenannten Dopplereffekt, beruht die Methode der inelastischen Röntgenstreuung.

Ähnlich wie bei einer Radarfalle, bei der durch eine Wellenlängenveränderung der Radarstrahlung die Geschwindigkeit des fahrenden Fahrzeugs bestimmt wird, können atomare Bewegungen wie Gitterschwingungen in Kristallen mit Hilfe des intensiven Röntgenlichts aus Teilchenbeschleunigern untersucht werden. Das Problem: Die Energie des eingestrahlten Lichts ändert sich bei der Streuung nur minimal – um etwa den milliardsten Bruchteil seiner Energie.

Deshalb kann für solche Experimente nur Licht aus einem sehr schmalen Energie- bzw. Wellenlängenbereich eingesetzt werden. Die Röntgenstrahlung, die ein Teilchenbeschleuniger zur Verfügung stellt, hat jedoch ein breites Energiespektrum.

Der allergrößte Teil dieser Synchrotronstrahlung muss also ausgeblendet werden und wird gar nicht genutzt. Als Folge kann die Intensität des nutzbaren Lichts trotz stärkster Röntgenquellen so schwach werden, dass diese Experimente nicht mehr durchführbar sind.

Einen Ausweg aus dieser Situation bietet eine neue Untersuchungsmethode, die Prof. Ralf Röhlsberger vorschlägt: Statt die Energiedifferenz beim Streuprozess zu messen, nutzt seine Methode zur Energieanalyse einen weiteren, bisher wenig beachteten Einfluss der untersuchten Probe auf die Polarisation der gestreuten Strahlung. Bei der inelastischen Streuung von Röntgenlicht an einer magnetischen Probe wird nämlich nicht nur die Energie der eingestrahlten Photonen verändert, sondern es wird auch die Ausrichtung ihrer Polarisationsebene verdreht:

Die Spinwellen in der beobachteten Probe versetzen die Polarisation, d.h. die Schwingungsebene der gestreuten Photonen in eine Art Kreiselbewegung, auch Präzession genannt. „Diese Kreiselbewegung ist ebenso charakteristisch für die magnetischen Anregungen im System wie die Energieverschiebung bei der konventionellen Methode“, erklärt Röhlsberger, der auch an der Universität Hamburg lehrt und Mitglied des Exzellenzclusters Hamburg Centre for Ultrafast Imaging (CUI) ist. „Misst man diese Präzession im Verhältnis zum eingestrahlten Referenzstrahl, hat man einen Fingerabdruck des Spektrums der Spinwellen in der Probe.“

Der große Vorteil des Konzepts ist, dass statt eines sehr schmalen Energiebereichs ein wesentlich breiteres Energieband zur Untersuchung genutzt werden kann, ohne die Messgenauigkeit zu verlieren. Ein Messprinzip mit ähnlichen Eigenschaften für Streuexperimente mit Neutronen, das sogenannte Neutronen-Spinecho, wird seit langem eingesetzt, um dynamische Prozesse in Festkörpern mit höchster Energieauflösung zu untersuchen.

Mit Neutronen ist so eine Methode allerdings viel einfacher zu realisieren, weil sich jede Energieänderung direkt auf deren Geschwindigkeit auswirkt, aus der man dann exakt die Energie bestimmen kann. Auf Photonen lässt sich die Methode nicht direkt übertragen, da diese, unabhängig von ihrer Energie, stets mit Lichtgeschwindigkeit unterwegs sind. „Deshalb habe ich für Photonen nach einer spektroskopischen Methode gesucht, bei der die Energieauflösung nicht von der Bandbreite der verwendeten Strahlung abhängt“, sagt Röhlsberger.

Erste Versuche zur experimentellen Realisierung dieser neuen Methodik, die Röhlsberger und sein Team an der Europäischen Synchrotronstrahlungsquelle ESRF durchführten, haben vielversprechende Ergebnisse geliefert. Ist das Messverfahren etabliert, ergeben sich weitreichende Anwendungsmöglichkeiten, angefangen von magnetischen Schaltvorgängen bis hin zu den Anregungsspektren von künstlich strukturierten magnetischen Festkörpern für die magneto-optische Informationstechnologie. Insbesondere die niederenergetische Dynamik von komplexen magnetischen Materialien gibt den Forschern heute noch Rätsel auf, die mit Hilfe dieser neuen Methode gelöst werden können.

„Die Methode eignet sich aber nicht nur für Synchrotronlichtquellen wie PETRA III, sondern auch für Untersuchungen mit Röntgenlasern wie dem European XFEL, der zurzeit vom DESY-Gelände in Hamburg-Bahrenfeld bis ins benachbarte Schenefeld in Schleswig-Holstein gebaut wird. Die Idee ist, dass wir am Ende mit einem einzigen Lichtblitz aus dem European XFEL die ganze Dynamik eines magnetischen Systems erfassen können.“

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
“Photon Polarization Precession Spectroscopy for High-Resolution Studies of Spin Waves”; Ralf Röhlsberger; Physical Review Letters, Bd. 112, Nr. 11, 21.3.2014; DOI: 10.1103/PhysRevLett.112.117205 (online vorab am 18.3.2014)

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher decken die grundsätzliche Limitierung im Schlüsselmaterial für Festkörperbeleuchtung auf

Zum ersten Mal hat eine internationale Forschungsgruppe den Kernmechanismus aufgedeckt, der den Indium(In)-Einbau in Indium-Galliumnitrid ((In, Ga)N)-Dünnschichten begrenzt - dem Schlüsselmaterial für blaue Leuchtdioden (LED). Die Erhöhung des In-Gehalts in InGaN-Dünnschichten ist der übliche Ansatz, die Emission von III-Nitrid-basierten LEDs in Richtung des grünen und roten Bereiches des optischen Spektrums zu verschieben, welcher für die modernen RGB-LEDs notwendig ist. Die neuen Erkenntnisse beantworten die langjährige Forschungsfrage: Warum scheitert dieser klassische Ansatz, wenn wir versuchen, effiziente grüne und rote LEDs auf InGaN-Basis zu gewinnen?

Trotz der Fortschritte auf dem Gebiet der grünen LEDs und Laser gelang es den Forschern nicht, einen höheren Indium-Gehalt als 30% in den Dünnschichten zu...

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Enzym mit überraschender Doppelfunktion

24.01.2018 | Biowissenschaften Chemie

Neuartiger hoch-produktiver Prozess für robuste Schichten auf flexiblen Materialien

24.01.2018 | Messenachrichten

Neuartiger Sensor zum Messen der elektrischen Feldstärke

24.01.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics