Verbotene FRET-Zustände auf hauchdünnem Gold

Goldbeschichtung von wenigen Nanometern kann ein sonst herkömmliches Deckglas in Verstärker verwandeln. Die Beschichtung ist biokompatibel und für die Kultivierung von adhärenten Zellen geeignet. Rudolf-Virchow-Zentrum

Diese neue Methode könnte sowohl Einzelzellmessungen zu mehr Präzision verhelfen, als auch Hochdurchsatz-Screenings optimieren, welche für die Medikamentenentwicklung eine große Rolle spielen. Die Ergebnisse wurden in der Fachzeitschrift ACS Photonics veröffentlicht.

Will man die Konformationsänderung oder Interaktion von Membranrezeptoren in lebenden Zellen beobachten, sind lichtmikroskopische Verfahren oft die Methode der Wahl. Ein Phänomen, was das Auslesen dieser Änderungen und Interaktionen erlaubt, ist der sogenannte Förster-Resonanzenergietransfer (FRET). Dieser erscheint immer dann, wenn sich zwei Fluorophore mit geeigneten spektralen Eigenschaften räumlich sehr nah kommen, und in korrekter Orientierung zueinander stehen.

Jedes Photon zählt

FRET dient als molekulares Lineal zwischen zwei Molekülen oder molekularen Kompartimenten. Die Methode ist leistungsstark, hat aber oft durch die begrenzte Anzahl der emittierten Photonen ihre Grenzen. Es macht das Design und die Etablierung eines entsprechenden FRET-Paares schwierig und fehleranfällig. In biologischen Untersuchungen ist es besonders schwierig, die Nähe und Orientierung der Fluorophore zu optimieren, ohne die physiologischen Eigenschaften des molekularen Komplexes zu stören.

Spiegeleffekt erlaubt „verbotene“ Zustände

Die Forscherteams der Professorin Katrin Heinze und des Professors Carsten Hoffmann haben nun die Hürden für die Nutzung der FRET Methode gesenkt. Die Forschungsgruppen haben nanobeschichtete Deckgläser verwendet, die mit speziellen Goldbeschichtungen versehen sind. Diese biokompatiblen Deckgläser bewirken eine Verstärkung des Energieübertrags, besonders für suboptimal orientierte FRET-Paare. Dies geschieht unter anderem dadurch, dass das FRET-Paar durch die Goldbeschichtung sich selbst im Spiegel „sieht“.

Dadurch stehen komplementäre Orientierungen für den Energieübertrag zur Verfügung, die den „Netto“-FRET erhöhen. Der Spiegeleffekt erlaubt also die Abfrage sonst „verbotener“ Zustände für FRET. Physikalisch bezeichnet man diesen Effekt als Depolarisation, hervorgerufen durch das komplexe Reflexionsverhalten des FRET-Paares nahe der Goldoberfläche.

Lange Zeit war es unter Physikern umstritten, ob es eine ausreichend starke FRET Erhöhung geben kann; dabei wurde die Orientierung der Moleküle nie ausreichend beachtet. Neueste theoretische und experimentelle Arbeiten an physikalischen Systemen gaben aber Anlass, die Möglichkeit der FRET-Verstärkung nochmal aufzugreifen.

„Diskussionen mit anderen Experten im Forschungsfeld stimmten uns zunächst nur vorsichtig optimistisch. Unsere Simulationen für den FRET Sensor des M1-Acetylcholin-Rezeptors zeigten allerdings, dass eine FRET-Verstärkung sehr wahrscheinlich ist. Die Experimente bestätigten schließlich in der Tat genau unsere Vorhersagen. So entstand unser „forbiddenFRET (forFRET)“, sagt Katrin Heinze. Carsten Hoffmann fügt hinzu: „ Diese Technologie ist zwar erst ganz am Anfang, aber sie hat großes Potential die Untersuchungen von GPCR Aktivierungen und Interaktionen in Zukunft noch exakter zu gestalten.“

Publikation

Schreiber, Benjamin; Kauk, Michael; Heil, Hannah; Emmerling, Monika; Tessmer, Ingrid; Kamp, Martin; Höfling, Sven; Holzgrabe, Ulrike; Hoffmann, Carsten; Heinze, Katrin: Enhanced fluorescence resonance energy transfer in G protein-coupled receptor probes by nano-coated microscopy coverslips; ACS Photonics, March 2018, DOI: 10.1021/acsphotonics.8b00072

Personen

Prof. Dr. Katrin Heinze leitet seit 2011 eine Forschungsgruppe am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg. Seit 2017 ist sie Universitätsprofessorin für Molekulare Mikroskopie.
Website: http://www.rudolf-virchow-zentrum.de/forschung/arbeitsgruppen/ag-heinze/forschun…

Prof. Dr. Carsten Hoffmann war von 2012 bis April 2017 Forschungsgruppenleiter am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg. Seit April 2017 ist er Direktor des Instituts für Molekulare Zellbiologie am Universitätsklinikum Jena. Website: http://www.zellbiologie.uniklinikum-jena.de/Startseite.html

Über das Rudolf-Virchow-Zentrum

Das Rudolf-Virchow-Zentrum gehört als Zentrale Einrichtung zur Universität Würzburg. Die Forschungsgruppen arbeiten auf dem Gebiet der Schlüsselproteine, die für die Funktion von Zellen und damit für Gesundheit und Krankheit besonders wichtig sind.

Kontakt:
Prof. Dr. Katrin Heinze (Molekulare Mikroskopie, Rudolf-Virchow-Zentrum)
Tel. +49 (0)931 31 84214, katrin.heinze@virchow.uni-wuerzburg.de

Prof. Dr. Carsten Hoffmann (Institut für Molekulare Zellbiologie, Universitätsklinikum Jena)
Tel. +49 (0)3641 9395601, carsten.hoffmann@med.uni-jena.de

Dr. Daniela Diefenbacher (Pressestelle, Rudolf-Virchow-Zentrum)
Tel. 0931 3188631, daniela.diefenbacher@uni-wuerzburg.de

http://www.rudolf-virchow-zentrum.de/aktuelles/aktuelles-details/article/verbote…

Media Contact

Dr. Daniela Diefenbacher idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer