Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verborgene Eigenschaften der Lichtabsoption von Titandioxid aufgedeckt

13.04.2017

Wissenschaftler des Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg haben die verborgenen Eigenschaften von Titandioxid aufgedeckt, ein vielversprechendes Material für die Lichtkonversionstechnologie.

Anatas, eine häufig vorkommende Kristallform von Titandioxid (TiO₂) stellt heute eines der vielversprechendsten Materialien für photovoltaische und photokatalytische Anwendungen dar. Trotz der vielen Jahre, in denen der Umwandlungsprozess von absorbiertem Licht in elektrische Ladungen im Falle von Anatas TiO2 schon untersucht worden ist, ist die Natur seiner grundlegenden optischen und elektronischen Eigenschaften bisher unklar geblieben.


Gitterstruktur von Anatas TiO2 mit einer graphischen Darstellung des 2D-Exzitons, das durch die Absorption von Licht erzeugt wird. Dieses 2D-Exciton ist die niedrigste Energieanregung des Materials.

Joerg M. Harms, MPSD

Wissenschaftler des MPSD (Max-Planck-Institut für Struktur und Dynamik der Materie) am CFEL (Center for Free-Electron Laser Science) in Hamburg, zusammen mit ihren internationalen Partnern bei der EPFL Lausanne, gelang es mit einer Kombination aus modernstem Steady-State und Ultraschnelle spektroskopische Techniken sowie theoretischen Simulationswerkzeugen die Grundeigenschaften von Anatas TiO₂ aufzuklären. Ihre Arbeit wird in Nature Communications veröffentlicht.

Anatas TiO₂ hat vielfältige Einsatzgebiete: von Photovoltaik und Photokatalyse bis hin zu selbstreinigenden Gläsern sowie Wasser- und Luftreinigung. Alle diese Anwendungen basieren auf der Absorption von Licht und deren anschließender Umwandlung in elektrische Ladungen. Angesichts seiner weit verbreiteten Verwendung, war TiO₂ eines der am meisten untersuchten Materialien im zwanzigsten Jahrhundert, sowohl experimentell als auch theoretisch. Paradoxerweise blieb die tatsächliche Natur des Lichtabsorptionsprozesses bisher noch ungeklärt.

Wenn Licht auf einem Halbleitermaterial trifft werden entweder freie negative Ladungen (Elektronen), positive Ladungen (Löcher) oder gebundene Elektron-Loch-Paare (Exzitonen) erzeugt. Exzitonen können sowohl Energie als auch Ladung transportieren und sind die Basis eines ganzen Forschungsfeldes, welches sich um neuartige „Next-Generation“ Elektronik bemüht. In Anlehnung an Elektronik wird das Feld „Exzitonik“ genannt.

Bisher waren Wissenschaftler nicht in der Lage mit Sicherheit zu identifizieren, welches physikalische Objekt für die Lichtabsorption und entsprechend für die charakteristischen Eigenschaften von TiO₂ verantwortlich war.

Die Gruppe von Prof. Angel Rubio an der Theorieabteilung der MPSD zusammen mit ihren internationalen Kooperationspartner hat dieses Problem mit einer Kombination aus hochmodernen ab-initio Simulationen zusammen mit modernsten experimentellen Methoden gelöst. Relevant sind hierbei die winkelaufgelösten Photoelektronenspektroskopie (eng. ARPES), die die Energetik der Elektronen (Bandstruktur) entlang der verschiedenen Achsen im Festkörper abbildet und die Spektroskopische Ellipsometrie, welche die makroskopischen optischen Parameter (Dielektrizitätskonstante etc.) des Festkörpers mit Präzision und ultraschneller zweidimensionaler Tief-Ultraviolett-Spektroskopie bestimmt und erstmals bei der Untersuchung von Materialien eingesetzt wurde. Sie fanden heraus, dass die Schwelle des Absorptionsspektrums auf ein stark gebundenes Exziton zurückzuführen ist, das zwei bemerkenswerte neuartige Eigenschaften aufweist:

a) es ist auf eine zweidimensionalen (2D) Ebene des dreidimensionalen Gitters des Materials beschränkt. Dies wäre der erste bekannte Fall einer solchen Eigenschaft.

b) Dieses 2D-Exciton ist bei Raumtemperatur stabil und robust gegen Defekte, die in jeder Art von TiO₂ (Einkristallen, Dünnfilmen und sogar Nanopartikeln) vorhanden sind.

Diese "Immunität" des Exzitons zu weitreichenden strukturellen Störungen und Defekten impliziert, dass es die ankommende Energie in Form von Licht speichern und auf der Nanoskala selektiv führen kann. Dies verspricht eine enorme Verbesserung gegenüber der gegenwärtigen Technologie, bei der die herkömmlichen Anregungsvorgänge üblicherweise extrem ineffizient sind, da die absorbierte Lichtenergie nicht gespeichert , sondern als Wärme auf das Kristallgitter abgetragen wird.

"Der Einsatz modernster experimenteller Techniken und Theorie ermöglicht uns nicht nur bekannte Materialien besser zu verstehen, sondern auch neue, noch effizientere Materialien für Energieanwendungen zu entwerfen", sagt Adriel Domínguez. Darüber hinaus können die Exzitonparameter durch eine Vielzahl von externen und internen Reizen (Temperatur, Druck, überschüssige Elektronendichte) abgestimmt werden, was ein leistungsfähiges, genaues und billiges Erkennungsschema für Sensoren mit optischer Auslesung verspricht. "Angesichts der preiswerten und leicht herzustellenden Anatas-TiO₂-Materialien sind diese Erkenntnisse für solche Anwendungen und darüber hinaus von entscheidender Bedeutung, um zu verstehen, wie elektrische Ladungen entstehen, nachdem das Licht absorbiert worden ist", sagt Prof. Majed Chergui von der EPFL. "Diese sind die Hauptakteure in der Solarenergieumwandlung und Photokatalyse."

Prof. Angel Rubio betont, dass diese Art von Studien, die sich aus der engen Zusammenarbeit zwischen theoretischen und experimentellen Gruppen ergeben, wesentlich sind, um den mikroskopischen Ursprung der Lichtenergieumwandlung und der Energieübertragungsprozesse für photovoltaische und photokatalytische Anwendungen relevanten Materialien zu enthüllen. Und so neue künstliche photosynthetische anorganische Materialien zu gestalten. "Wir werden weiterhin mit unseren internationalen Partnern in der EPFL in Lausanne zusammenarbeiten, um zu verstehen, wie sich diese Art von Grundmaterialien sowie viele andere niederdimensionale Oxid-Nanostrukturen verhalten, wenn sie durch äußere Reize wie das Licht aus dem Gleichgewicht getrieben werden.“

Diese Arbeit wurde in Zusammenarbeit vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) mit dem Lausanner Zentrum für Ultrafast Science (LACS) und dem Institut für Physik (IPHYS), der Universität Freiburg, der Università Campus Bio-Medico di Roma, Center for Life Nano Science in der Università di Roma "La Sapienza" und der Universidad del Pais Vasco durchgeführt. Die Finanzierung erfolgte durch die Schweizerischen National Science Foundation (SNSF, NCCR: MUST), dem European Research Council Advanced Grants ("DYNAMOX" und "Qspec-Newmat"), Grupos Consolidados del Gobierno Vasco und den Österreichischen Wissenschaftsfonds.

Publikation:
E. Baldini, L. Chiodo, A. Dominguez, M. Palummo, S. Moser, M. Yazdi-Rizi, G. Auböck, B.P.P. Mallett, H. Berger, A. Magrez, C. Bernhard, M. Grioni, A. Rubio, M. Chergui
Strongly bound excitons in anatase TiO2 single crystals and nanoparticles
Nature Communications Nature Communications 8, Article number: 13 (2017)

Weitere Informationen:

http://www.mpsd.mpg.de/399598/2017-04-Baldini-Rubio MPSD Forschungsmeldung mit Kontakten
http://www.mpsd.mpg.de/forschung/theo Theorie Abteilung von prof. Angel Rubio
http://dx.doi.org/doi:10.1038/s41467-017-00016-6 Originalpublikation

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten