Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verbesserte Stabilität von Elektronenspins in Qubits

08.09.2015

Das Rechnen mit Elektronenspins im Quantencomputer setzt voraus, dass die Spinzustände ausreichend lange andauern. Physiker der Universität Basel und des Swiss Nanoscience Institute konnten nun zeigen, dass ein Austausch von Elektronen in Quantenpunkten die Stabilität dieser Information grundlegend beschränkt. Die Kontrolle dieses Austauschprozesses ebnet den Weg, um bei der Kohärenz der fragilen Quantenzustände weitere Fortschritte zu erzielen. Dies berichten die Basler Forscher in der Fachzeitschrift «Physical Review Letters».

Die Grundidee des Quantencomputers besteht darin, die Nullen und Einsen der heutigen Bits durch Quantenzustände, kurz Qubits, zu ersetzen. Qubits sind Informationseinheiten, die nicht nur die Werte null und eins annehmen können, sondern bei denen null und eins gleichzeitig und in beliebiger Mischung in einer Quanten-Überlagerung möglich sind.


Doppelter Quantenpunkt: Die die drei oberen und unteren Kontakte halten bis zu zwei einzelne Elektronen gefangen, deren Spinzustände die quantenmechanische Informationseinheit bilden.

Universität Basel

Qubits lassen sich zum Beispiel mit den Spins einzelner Elektronen realisieren, die in nanometergrossen Strukturen aus Halbleitermaterial, sogenannten Quantenpunkten, festgehalten werden. Durch Ausnutzung quantenmechanischer Prinzipien wie der Überlagerung kann ein Quantencomputer enorme Rechengeschwindigkeiten erreichen – aber nur, wenn die Elektronenspins ausreichend lange andauern.

In den vergangenen Jahren liess sich diese sogenannte Kohärenzzeit auf über eine Millisekunde ausdehnen, indem es gelang, durch Kernspins verursachte Störung zu reduzieren. Damit gewann die Frage an Bedeutung, welche weiteren Ursachen die Stabilität der Elektronenspins beeinträchtigen.

Austausch von Elektronen entdeckt

Physiker der Universität Basel und des Swiss Nanoscience Institute haben nun festgestellt, dass die Kohärenz der Qubits durch einen Vorgang beschränkt wird, bei dem einzelne Elektronen zwischen einem Quantenpunkt und einem externen Reservoir ausgetauscht werden. Das Reservoir stellt eine Art Elektrode dar, die mit dem Quantenpunkt in Kontakt steht und für die Messungen benötigt wird.

Die Forscher um Professor Dominik Zumbühl beobachteten im Experiment, dass ausgelöst durch eine thermische Anregung ein Elektron aus dem Quantenpunkt ins Reservoir springt und kurz darauf ein anderes Elektron aus dem Reservoir in den Quantenpunkt wechselt.

Durch den Austausch entsteht ein kurzlebiger Ladungszustand, den die Basler Forscher nun erstmals mit einem Ladungssensor nachweisen konnten. Der Austauschprozess führt auch dazu, dass die Elektronenspins regellos angeordnet werden, wodurch die Quanteninformation verlorengeht.

Grundlegender Prozess für Kohärenz

Aufgrund der experimentellen Beobachtungen konnten die Forscher die bisherige theoretische Beschreibung von doppelten Quantenpunkten, die zwei Elektronen aufweisen können, entscheidend erweitern. Zudem gelang es, die Intensität des temperaturabhängigen Austauschprozesses zu beeinflussen, indem sie die Elektronen auf 60 Millikelvin herunterkühlten. Zugleich liess sich der Prozess verlangsamen und die Stabilität der Spins ausdehnen, indem sie die Spannungen an den Zugängen des Quantenpunktes, den sogenannten Gates, veränderten.

Das Verständnis und die Kontrolle dieses für Quantenpunkte grundlegenden Austauschprozesses ebnet den Weg, um bei der Kohärenz von Qubits weitere Fortschritte zu erzielen. Gleichzeitig eröffnet sich damit eine Möglichkeit, um in den Quantenpunkten schnell die gewünschten Spinzustände zu erzeugen.

Umsetzung eines theoretischen Konzepts mit Basler Wurzeln

Der Ansatz, Quantenpunkte in Halbleitern zu verwenden, um den Spin eines einzelnen Elektrons als Qubit zu nutzen, geht auf Prof. Daniel Loss von der Universität Basel und den amerikanische Physiker David DiVincenzo zurück. Ihr Konzept, das sie 1998 vorgelegt hatten, verfügt auch über das Potenzial, Quantencomputer mit vielen verbundenen Spin-Qubits zu realisieren. Die aktuelle Studie entstand in Zusammenarbeit mit Forschern der University of St Andrews (GB) und der University of California, Santa Barbara (USA).

Originalbeitrag

D. E. F. Biesinger, C. P. Scheller, B. Braunecker, J. Zimmerman, A. C. Gossard, D. M. Zumbühl
Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot
Physical Review Letters 115 (2015), doi: 10.1103/PhysRevLett.115.106804

Weitere Auskünfte

Prof. Dr. Dominik Zumbühl, Universität Basel, Departement Physik, Tel. +41 61 267 36 93, E-Mail: dominik.zumbuhl@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Verbesserte-Stabilitaet-von-E...

Yannik Sprecher | Universität Basel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften