Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Urknall in der Strahlentherapie

12.08.2009
Ärzte am Münchner Uniklinikum der LMU nutzen Erkenntnisse aus CERN für die bestmögliche Strahlenbehandlung

Intensitätsmodulierte Strahlentherapieverfahren (IMRT) haben seit einigen Jahren Einzug in die klinische Routine in der Strahlentherapie gehalten. Mit der so genannten Intensitätsmodulation, deren technische Spielarten auch die Tomotherapie und das Cyberknife umfassen, ist es möglich, hochkomplexe Zielvolumina zu umschließen und somit die Nebenwirkungswahrscheinlichkeit deutlich zu reduzieren.

Das aktuell im Klinikum der Universität München eingeführte Bestrahlungsverfahren wurde durch die Arbeitsgruppe für medizinische Physik unter der Leitung von Dr. Markus Alber an der Universität Tübingen federführend entwickelt und dort von einem Ärzteteam um Prof. Claus Belka und Dr. Ute Ganswindt in die breite klinische Routine eingeführt. Aus dem Entwicklungsprototyp ist in Zusammenarbeit mit der Firma Computerized Medical Systems (Saint Louis/USA und Freiburg/Deutschland) ein kommerzielles Produkt entwickelt worden. Diese Bestrahlungsplanungs-Software, die als MONACO bezeichnet wird, kommt aktuell an der Universität München erstmalig zum klinischen Einsatz in Deutschland.

Die Berechnungsverfahren ("Monte Carlo-Algorithmen"), die zur Planung der optimalen Strahlungsbehandlung angewandt werden, resultieren zum Teil aus der Grundlagenforschung aus der internationalen Großforschungseinrichtung CERN im Kanton Genf/Schweiz. In riesigen Teilchenbeschleunigern werden dort unter anderem Versuche zur Entstehung der Welt und zum Urknall durchgeführt. Um das Verhalten der Teilchen zu analysieren, bedarf es komplexer Rechenvorgänge, die auch bei der medizinischen Behandlungsplanung in der Strahlentherapie von Nutzen sind.

Hohe Rechenleistung sorgt für geringe Nebenwirkungen

Vorteile dieses IMRT-Verfahrens der zweiten Generation ist die Implementierung von so genannten Monte-Carlo-Berechnungsroutinen, mit denen es möglich ist, die Dosisverteilung, die bei der Bestrahlung im Patienten erzielt wird, mit bislang unerreichter Präzision vorauszuberechnen. Insbesondere bei komplizierten Dosisverteilungen an Grenzflächen zwischen Luft und Knochen, wie sie bei Bestrahlung im Gesichtsschädelbereich auftreten, bietet dieses Dosisberechnungsverfahren eine optimale Möglichkeit, die Dosen im behandelten Patienten im Voraus hochpräzise im Computer abzubilden. Neben dieser optimalen Vorausberechung von Dosisverteilungen ist es mit dem neuen Bestrahlungsplanungssystem erstmalig möglich auf das biologische Reaktionsverhalten von gesunden Geweben spezifisch Rücksicht zu nehmen und die Strahlenverteilung somit zu perfektionieren. Somit ermöglichen es die im Programm implementierten Computerroutinen dem behandelnden Arzt auf einfache Weise, die bestmögliche Entscheidung zwischen einer möglichen Schädigung von umliegenden Normalgeweben und einer optimalen Behandlung des Tumors zu treffen.

Einfachere Anwendung bedeutet größere Sicherheit für Patienten
Mit diesem Verfahren wird die Anwendung von IMRT erheblich vereinfacht und dem behandelnden Arzt eine viel intuitivere Steuerung der Bestrahlungsplanung ermöglicht. Für den Patienten bedeutet es im Umkehrschluss, dass immer das Optimum des physikalisch Erreichbaren in der Bestrahlungsplanung angeboten werden kann. Das aus Tübingen nach München gewechselte Behandlungsteam hat im klinischen Einsatz mit dem Prototyp dieses Behandlungsplanungssystems bereits weit mehr als 700 Patienten mit Tumoren der Prostata, des Kopf-Hals-Bereiches und des Gesichtsschädels, inklusive von komplexen Meningeomen, behandelt. In wissenschaftlichen Untersuchungen konnte die hohe Effizienz und die effektive Normalgewebsschonung dieses Verfahrens belegt werden.

In Kombination mit Linarbeschleunigern, die über eine Ausstattung mit einem Cone-Beam-CT zur präzisen Lagerungskontrolle des Patienten verfügen, kann mit dieser Bestrahlungsplanungstechnologie eine - im Rahmen der physikalischen Grenzen - perfekte IMRT-Bestrahlung erreicht werden.

Kontakt
Prof. Dr. Claus Belka
Direktor der Klinik und Poliklinik
für Strahlentherapie und Radioonkologie
Klinikum der Universität München
Tel: 089 7095-4521 (Campus Großhadern)
Und 089 5160-7561 (Campus Innenstadt)
E-mail: claus.belka@med.uni-muenchen.de
Klinikum der Universität München
Im Klinikum der Universität München (LMU) sind im Jahr 2008 an den Standorten Großhadern und Innenstadt etwa 500.000 Patienten ambulant, poliklinisch, teilstationär und stationär behandelt worden. Die 44 Fachkliniken, Institute und Abteilungen verfügen über mehr als 2.300 Betten. Von insgesamt 9.800 Beschäftigten sind rund 1.700 Mediziner. Forschung und Lehre ermöglichen eine Patientenversorgung auf höchstem medizinischem Niveau. Das Klinikum der Universität München hat im Jahr 2008 etwa 64 Millionen Euro an Drittmitteln eingeworben und ist seit Juni 2006 Anstalt des öffentlichen Rechts.

Philipp Kressirer | idw
Weitere Informationen:
http://www.uniklinikum-muenchen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die schnellste lichtgetriebene Stromquelle der Welt
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie