Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterwassertanz von Mikromagneten

22.11.2016

Physik: Veröffentlichung in Nature Communications

Winzige magnetische Partikel, die mit einem zusätzlichen eigenen Antrieb ausgestattet sind, vollführen in einer Flüssigkeit hoch komplexe Bewegungsmuster. Physiker der Heinrich-Heine-Universität Düsseldorf (HHU) und des Argonne National Laboratory in den USA haben diese „Unterwassertänze“ von Mikromagneten entdeckt und die Abhängigkeit ihrer Bewegungen von der Struktur, die die Teilchen in der Flüssigkeit einnehmen.


Schnappschuss von einem „Watscheltanz“ nach der Fusion von zehn schwimmenden Mikromagneten.

Andreas Kaiser

Die Ergebnisse ihrer Simulationen stellen sie in der aktuellen Ausgabe der Fachzeitschrift Nature Communications vor.

„Solche winzigen Mikromagnete kommen sogar in der belebten Natur vor“, so Prof. Dr. Hartmut Löwen vom Institut für Theoretische Physik II der HHU und einer der Autoren der Studie. Und zwar in so genannten magnetotaktischen Bakterien wie Magnetospirillum gryphiswaldense oder Magnetospirillum magnetotacticum. Diese Bakterien besitzen spezielle magnetische Zellorganellen („Magnetosome“), mit deren Hilfe sie sich an Magnetfeldern wie dem der Erde orientieren.

Die Physiker haben winzige, kugelförmige magnetische Eisenspäne am Computer modelliert. Diese Späne besitzen einen Selbstantrieb, so dass sie aktiv in einer Flüssigkeit schwimmen können. Somit kommt es zu einem Wettstreit zwischen der Schwimmbewegung und der gegenseitigen magnetischen Anziehung.

In den Computersimulationen beobachten die Forscher zum einen, dass sich die Teilchen aufgrund ihrer magnetischen Anziehung zu Clustern zusammenlagern. Kugelförmige Späne bilden Ketten oder Ringe. Wenn sich solche Cluster miteinander verbinden, beobachtet man komplexe Bewegungsmuster, sie führen quasi einen Unterwassertanz auf. Einen solchen watschelnden Tanz von zehn solcher Cluster kann auf der Online-Seite der Publikation betrachtet werden.

„Unsere Ergebnisse zeigen, wie man das Schwimmverhalten von Mikromagneten steuern kann“, so Prof. Dr. Hartmut Löwen. Auch im Hinblick auf die winzigen Lebewesen bringen sie neue Erkenntnisse: „Wir bekommen so Anhaltspunkte zum Verhalten und Orientierungsvermögen der magnetotaktischen Bakterien“.

Originalpublikation

Francisca Guzmán-Lastra, Andreas Kaiser & Hartmut Löwen, Fission and fusion scenarios for magnetic microswimmer clusters, Nature Communica-tions, 7:13519, 22. November 2016
DOI: 10.1038/ncomms13519

Weitere Informationen:

http://www.nature.com/article-assets/npg/ncomms/2016/161122/ncomms13519/extref/n...

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Alternder Stern bläst Materie von sich
21.09.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie