Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Untersuchungen des Skyrmion-Hall-Effekts zeigen überraschende Ergebnisse

27.12.2016

Weiterer Schritt zur Nutzung von Skyrmionen für anwendungsrelevante Systeme

Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) ist ein weiterer Durchbruch in der Grundlagenforschung für mögliche Datenspeichertechnologien der Zukunft gelungen. Bereits im März 2016 hatte das internationale Forscherteam Strukturen vorgestellt, in denen elektronische Daten wie auf magnetischen Schieberegistern, sogenannten Racetracks, in Form magnetischer Wirbelstrukturen oder Skyrmionen abgelegt werden könnten. Die Idee verspricht schnelle Zugriffszeiten und hohe Speicherdichten bei niedrigem Energieverbrauch. Im Rahmen eines Folgeprojekts konnte nun die milliardenfach reproduzierbare Verschiebung von Skyrmionen zwischen verschiedenen Positionen erreicht werden, also genau der Vorgang, der im Racetrack-Schieberegister für den Transport von Information verwendet werden soll. Damit ist ein weiterer kritischer Schritt für die Nutzung von Skyrmionen in Racetracks genommen. Die Forschungsarbeit wurde im Fachmagazin Nature Physics publiziert.


Die magnetische Struktur eines Skyrmions ist symmetrisch um dessen Kern; Pfeile zeigen die Richtung der Spins an.

Abb./©: Benjamin Krüger, JGU

Bei den Experimenten wurden Dünnschichtfilme verwendet, also vertikal, nicht symmetrisch gestapelte Nano-Lagen verschiedener Materialien, die zusammen die Inversionssymmetrie brechen und so jene speziellen Spinstrukturen, die Skyrmionen, stabilisieren. Die Strukturen ähneln konzeptionell einem Haarwirbel und lassen sich ebenso schlecht entfernen. Damit sind die Strukturen jedoch auch stabiler, was ein weiteres Argument für deren Nutzung in Speichertechnologie liefert.

Da Skyrmionen mit elektrischen Strömen verschoben werden können und sie eine abstoßende Kraft vom Rand eines Nanodrahts wie auch von einzelnen Defekten im Material spüren, verfügen sie über die einzigartige Fähigkeit, sich relativ störungsfrei durch ein Material zu bewegen. Gerade diese Eigenschaften sind besonders wünschenswert für die Racetrack-Speicher, bei denen statische Lese- und Schreibköpfe vorliegen und die magnetischen Bits an diesem vorbeigeführt werden. Damit wäre das Design zusätzlich auch extrem stoßresistent, was für mobile Anwendungen zentral ist. Ein wichtiger Aspekt bei der Skyrmion-Dynamik ist allerdings, dass diese sich nicht nur entlang der Stromrichtung bewegen, sondern auch eine Komponente senkrecht dazu aufweisen. Dies führt zu einem Winkel zwischen Skyrmion-Bewegung und Stromrichtung, den man als Skyrmion-Hall-Winkel bezeichnet und der theoretisch vorhergesagt ist. Die Skyrmionen sollten sich demnach unter dem konstanten Skyrmion-Hall-Winkel bewegen, bis sie den Rand des magnetischen Materials spüren und dann in einem konstanten Abstand zu diesem bleiben.

Im Rahmen ihrer aktuellen Forschungsarbeit haben die Forscher der JGU und des MIT nun zum einen bewiesen, das milliardenfach reproduzierbare Skyrmion-Bewegung praktisch tatsächlich möglich ist und mit hohen Geschwindigkeiten erfolgen kann. Zum anderen wurde auch der Skyrmion-Hall-Winkel näher untersucht. Dabei stellte sich überraschenderweise heraus, dass dieser von der Geschwindigkeit der Skyrmionen abhängt, also horizontale und vertikale Bewegungskomponenten nicht in gleichem Maße mit der Geschwindigkeit skalieren. Dies wird allerdings durch die Standard-Theorien nicht vorhergesagt. Eine Deformation der Skyrmionen während der Bewegung könnte Teil der Erklärung sein, bis Skyrmionen jedoch komplett verstanden werden, bedarf es noch einiger theoretischer Arbeit.

"Es freut mich wirklich sehr, dass wir schon das zweite hochrangige Paper aus der Kollaboration zwischen JGU und MIT gewonnen haben. Gerade in so kurzer Zeit von nur wenigen Monaten ist das schon etwas Besonderes und ich bin froh, daran teilhaben zu können", betont Kai Litzius, Erstautor der Veröffentlichung. Litzius forscht als Stipendiat der Exzellenz-Graduiertenschule "Materials Science in Mainz" (MAINZ) in der Gruppe von Prof. Dr. Mathias Kläui.

"In hochkompetitiven Forschungsfeldern wie dem Bereich der Skyrmionen bedeuten internationale Kooperationen mit führenden Gruppen einen strategischen Vorteil. Innerhalb von nur zwei Jahren nach Beginn der Zusammenarbeit mit Kollegen am MIT haben wir bereits die zweite hochrangige Publikation in der Nature-Verlagsgruppe veröffentlicht. Die Exzellenz-Graduiertenschule MAINZ fördert dabei den Aufenthalt von Doktorandinnen und Doktoranden aus den USA in Mainz und umgekehrt. Damit leistet MAINZ einen essenziellen Beitrag für die Internationalisierung unserer Ausbildung und ermöglicht gleichzeitig extrem erfolgreiche Forschung", unterstreicht Prof. Dr. Mathias Kläui, Professor am Institut für Physik der JGU und Direktor von MAINZ.

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Veröffentlichung:
Kai Litzius et al.
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
Nature Physics, 26. Dezember 2016
DOI: 10.1038/nphys4000


Kontakt:
Prof. Dr. Mathias Kläui
Physik der Kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de

Exzellenz-Graduiertenschule Materials Science in Mainz
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4000.html – Abstract ;
https://www.uni-mainz.de/presse/74601.php – Pressemitteilung "Internationalem Forscherteam gelingt kontrollierte Bewegung von Skyrmionen" (02.03.2016) ;
https://www.uni-mainz.de/presse/63817.php – Pressemitteilung "Physiker beobachten Bewegung von winzigen Magnetisierungswirbeln" (03.02.2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungsnachrichten

Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung

19.02.2018 | Materialwissenschaften

Wenn Eiweiße einander die Hand geben

19.02.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics