Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wo die Unterschiede zwischen Sternen und Planeten verwischen

10.10.2013
Eine Gruppe von Astronomen, zu der auch Niall Deacon vom Max-Planck-Institut für Astronomie (MPIA) gehört, hat ein Bild eines ungewöhnlichen frei im All treibenden Planeten aufgenommen.

Ohne Heimatstern ist das Objekt ungleich einfacher zu untersuchen als ein normaler Planet und verspricht neue Erkenntisse über die Eigenschaften von Planetenatmosphären.


Künstlerische Darstellung des Einzelobjekts PSO J318.5-22, das eine Gruppe von Astronomen unter der Leitung von Michael Liu von der Universität Hawaii unter Beteiligung von Niall Deacon vom Max-Planck-Institut für Astronomie entdeckt hat. Der Planet besitzt sechs Mal soviel Masse wie der Jupiter und reist einsam, ohne Heimatstern durch das All – ein ideales Objekt für direkte Beobachtungen.

Bild: MPIA / V. Ch. Quetz


Künstlerische Darstellung des Einzelobjekts OTS44. Sorgfältige Untersuchungen einer Astronomengruppe unter der Leitung von Viki Joergensen (MPIA) zeigen, dass sich dieses Objekt in der gleichen Weise gebildet hat wie ein Stern. Auch jetzt noch fallen beachtliche Mengen an Materie aus der das Objekt umgebenden Scheibe auf OTS44.

Bild: MPIA / A. M. Quetz

Zu der Frage, wie sich derart massearme Einzelobjekte bilden, liefern unabhängige Beobachtungen von Viki Joergens (MPIA) und Kollegen neue Daten: Die Astronomen fanden heraus, dass ein ganz ähnliches massearmes Objekt auf die gleiche Weise geboren wird wie ein junger Stern – wichtige Information für unser Verständnis der Sternentstehung.

Früher war alles einfacher. Zum einen waren da Sterne: riesige, selbstleuchtende Gaskugeln. Dann gab es noch Planeten, mit sehr viel geringerer Masse, die das Licht ihres Heimatsterns jeweils nur reflektierten. Sterne entstehen aus dem Kollaps gigantischer Gaswolken; Planeten bilden sich in der Gas- und Staubscheibe rund um einen jungen Stern. Irgendwo dazwischen lagen, etwas weniger eindeutig, Braune Zwerge: Weniger massereich als ein Stern, so dass tief in ihrem Inneren keine Kernfusionsreaktionen einsetzen konnten, aber massereicher als Planeten.

Nun haben zwei neue Entdeckungen die Grenze zwischen diesen verschiedenen Objektsorten noch weiter verwischt: sie zeigen, dass auch frei im All treibende Objekte mit ähnlicher Masse wie die Planeten auf die gleiche Weise entstehen können wie Sterne.

Die erste Entdeckung gelang einem internationalen Astronomenteam unter der Leitung von Michael Liu von der Universität Hawaii. Die Astronomen entdeckten mit dem Pan-STARRS1 (PS1)-Teleskop auf Hawaii ein exotisches junges Himmelsobjekt mit gerade einmal dem sechsfachen der Jupitermasse, das für sich allein durch den Weltraum treibt – ganz ohne Heimatstern.

Das Objekt mit der Katalognummer PSO J318.5-22 befindet sich von der Erde aus gesehen in einem Abstand von nur 80 Lichtjahren im Sternbild Steinbock. Es hat ähnliche Eigenschaft wie die gigantischen Gasplaneten, die man in der Nähe einiger junger Sterne gefunden hat. Mit rund 12 Millionen Jahren ist das Objekt, gemessen an den Zeitskalen der Stern -und Planetenentstehung, noch recht jung.

Seit 1995 haben Astronomen rund tausend Exoplaneten entdeckt – allerdings fast immer nur auf indirektem Wege, über ein leichtes Schlingern oder eine leichte Verdunkelung des Heimatsterns, die sich auf einen Planetne zurückführen lassen. Nur von einer Handvoll von Exoplaneten gibt es Abbildungen – und zwar jeweils von Planeten mit jungen Heimatsternen (weniger als 200 Millionen Jahre alt). In Masse, Farbe und Energieausstoß hat PSO J318.5-22 große ähnlichkeit mit den auf diesen Abbildungen sichtbaren Objekte.

Niall Deacon vom Max-Planck-Institute für Astronomie, einer der Koautoren des Fachartikels, welcher die Entdeckung beschreibt, erklärt, warum der Fund für die Astronomen ein Glücksfall ist: »Es ist ungemein schwierig, die bisherigen Planeten, von denen es Abbildungen gibt, eingehender zu untersuchen. Direkt neben dem Planeten leuchtet schließlich jeweils der sehr viel hellere Heimatstern. PSO J318.5-22 dagegen kreist nicht um einen Stern und wird sich daher ungleich einfacher untersuchen lassen. Davon erhoffen wir uns Erkenntnisse über die Eigenschaften und Strukturen von Gasriesen wie Jupiter in einer frühen Phase ihrer Entwicklung.«

Mit einer Masse von nur sechs Jupitermassen ist PSO J318.5-22 eines der masseärmsten frei im All treibenden Objekte, die außerhalb unseres Sonnensystems nachgewiesen werden konnten – womöglich sogar das masseärmste. Herkömmliche Planeten werden in Gas- und Staubscheiben rund um ihren in Entstehung befindlichen Heimatstern geboren. Aber wie ist es mit Einzelobjekten so geringer Masse? Können sich frei treibende Objekte, aber z. B. auch Braune Zwerge ganz allgemein, auf die gleiche Weise bilden wie herkömmliche Sterne? Eine umfangreiche Untersuchung, die zeitgleich von einer weiteren Gruppe von Astronomen unter der Leitung von Viki Joergens (MPIA) veröffentlicht wurde, legt das nahe.

Joegens und ihre Kollegen untersuchten ein Objekt mit der Katalognummer OTS44, das nur rund 2 Millionen Jahre alt ist – auf den Zeitskalen der Planeten- und Sternentstehung ein neugeborenes Baby. Das Objekt hat eine Masse von schätzungsweise 12 Jupitermassen (also etwas mehr als PSO J318.5-22). Es treibt ebenfalls alleine, ohne Heimatstern durch das All – allerdings in einem durchaus geselligen Gebiet: OTS44 ist Teil der Chamaeleon-Sternentstehungsregion im südlichen Sternbild Chamaeleon in einem Abstand von etwas mehr als 500 Lichtjahren von der Erde. Dort werden zahlreiche neue Sterne aus dem Kollaps von Gas- und Staubwolken geboren.

Genau wie ein junger Stern ist OTS44 von einer Scheibe aus Gas und Staub umgeben. Und, wie Joergens und ihre Kollegen zeigen konnten: Die Geburt ist noch gar nicht ganz abgeschlossen. Die Astronomen zerlegten das Licht von OTS44 mit Hilfe des SINFONI-Spektrografen am Very Large Telescope der ESO in Chile in seine Bestandteile. Dabei fanden sie Anzeichen dafür, dass OTS44 auch jetzt noch Materie aus der ihn umgebenden Scheibe auf sich zieht. Joergens sagt: »Unsere Beobachtungen zeigen, dass der Stern OTS44 auch jetzt noch Gas auf sich zieht und so seine Masse erhöht.«

Durch den Vergleich von Daten verschiedener Teleskope – unter anderem des Weltraumteleskops Herschel – mit einem sorgfältig rekonstruierten Modell des freifliegenden Planeten konnten Joergens und ihre Kollegen außerdem nachweisen, dass die Scheibe, die OTS44 umgibt, mindestens 30 Mal soviel Masse in sich vereint wie die Erde. Anzeichen für die Scheibe selbst waren bereits zuvor von anderen Astronomen nachgewiesen worden. Sowohl die beachtliche Scheibe und das einfallende Material (Akkretion) sind klare Hinweise auf Entstehungsprozesse, wie sie für die Sternentstehung typisch sind. Zumindest von der Entstehung her scheint es keinen grundlegenden Unterschied zwischen Objekten wie OTS44 und herkömmlichen Sternen zu geben. OTS44 hat dabei mit die niedrigste, vielleicht sogar die allerniedrigste Masse aller Objekte, bei denen je eine Scheibe und einfallendes Material nachgewiesen werden konnten.

Joergens fährt fort: »Wenn PSO J318.-22 ein junges Himmelsobjekt ist, dann ist OTS44 ein regelrechtes Neugeborenes – und wir sehen, dass es genau so geboren wird wie ein normaler Stern. Für die Forscher, die sich mit der Sternentstehung beschäftigen, ist das eine Schlüsselinformation: Von Sternen bis hinunter zu Einzelobjekten mit der Masse von Planeten laufen die gleichen Prozesse ab.«

Beide Objekte fügen sich nicht recht in die existierenden Kategorien ein. Einsamer Planet oder Brauner Zwerg mit extrem geringer Masse – wer auf Nummer sicher gehen möchte, der sollte allgemeiner von frei schwebenden Objekten mit planetaren Massen reden. Hubert Klahr (MPIA), ein Experte für die Simulation von Stern- und Planetenentstehung, der nicht an der hier beschriebenen Forschung beteiligt war, kommentiert: »Hier haben wir ein weiteres Zeichen dafür, dass unsere herkömmliche Einteilung von Planeten und Sternen, bei der man die Masse als Anhaltspunkt nimmt, uns nichts über die innere Struktur oder die Entstehungsgeschichte solcher Objekte sagt.«

Kontakt

Viki Joergens (Erstautor, Nachweis Scheibe und Akkretion OTS44)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 464
E-Mail: joergens@mpia.de
Niall Deacon (Koautor, neu entdecktes Objekt PSO J318.5-22)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 208
E-Mail: Email: deacon@mpia.de
Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 261
E-Mail: pr@mpia.de
Weitere Informationen:
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2013/PR_2013_09/PR_2013_09_de.html

- Online-Version mit weiteren Informationen und hochaufgelösten Bildern

Dr. Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik