Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unschlüssige Quanten

22.02.2013
In Ytterbiumnickelphosphid gibt es einen bislang nicht für möglich gehaltenen quantenkritischen Punkt zwischen Ferromagnetismus und dem unmagnetischen Zustand

Was hat das Schmelzen von Eis mit Hochtemperatur-Supraleitung gemeinsam? Nichts, und doch gibt es eine seltsame Verbindung. Dieses große, ungelöste Rätsel der Physik und andere Quantenphänomene haben mit sogenannten Phasenübergängen zu tun, zu denen auch das Schmelzen von Eis zählt.


Messgeräte für extreme Dimensionen: Die Thermische Expansions-Zelle (links) ermöglicht es, bei Temperaturen zwischen sechs und 0,05 Kelvin – das sind minus 267,15 beziehungsweise minus 273,1 Grad Celsius – Längenveränderungen von weniger als einem Nanometer, also einem Millionstel Millimeter, zu messen. So können sie den Phasenübergang zwischen ferromagnetischem und paramagnetischem Zustand beobachten, bei dem sich auch das Volumen der Probe ändert. Mit dem Instrument rechts messen die Forscher bei hohen magnetischen Feldern und tiefen Temperaturen, wieviel Wärme ihre Probe aufnimmt oder abgibt. Das verrät den Forschern, welche Art Phasenübergang das Material durchläuft.

© MPI für chemische Physik fester Stoffe

Allerdings sind es „Quantenphasenübergänge“, die eng mit solchen Quantenphänomenen verknüpft sind. Sie existieren ganz am unteren Ende der Temperaturskala, am absoluten Nullpunkt. Physiker vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden haben nun ein exotisches Material erschaffen: Bei extrem tiefen Temperaturen weiß es nicht, ob es einen Phasenübergang in einen magnetischen Zustand durchlaufen soll oder nicht. Es befindet sich an einem Quantenkritischen Punkt. Solche seltsamen Zustände gelten als Schlüssel zum besseren Verständnis exotischer Phänomene wie der Hochtemperatur-Supraleitung, bei der ein Material schon bei relativ hohen Temperaturen seinen elektrischen Widerstand verliert.

Zur Zeit erleben wir fast täglich, dass Schnee und Eis zu Wasser schmelzen oder Wasser umgekehrt zu Eis gefriert. Genau betrachtet ist so eine Änderung der Eigenschaften dramatisch, in der Physik heißt sie Phasenübergang. Ganz allgemein sorgt eine steigende Temperatur erst für Schmelzen und später Verdampfen, das gilt für Wasser wie für andere Materialien. Wie in jedem Festkörper sind die Moleküle in Eis ordentlich in ihren kristallinen Positionen eingeparkt. Zufuhr von Wärmeenergie löst sie aus diesen Parkpositionen und treibt sie in einen zunehmend wimmelnden Molekülverkehr: Das Eis schmilzt zu flüssigem Wasser. Phasenübergänge sind also Übergänge zwischen Zuständen mit unterschiedlichem Ordnungsgrad.

Für Phasenübergänge interessiert sich auch Manuel Brandos „Kompetenzgruppe Extreme Bedingungen“ am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden. Allerdings sind diese „Quantenphasenübergänge“ so extrem wie rätselhaft. Um sie zu erforschen, müssen die Physiker ihre Proben äußerst niedrigen Temperaturen aussetzen. Das Phänomen, das die Dresdner hierfür sozusagen als Labormaus benutzen, kennen wir ebenfalls aus dem Alltag. Es ist der Magnetismus, sogar in seiner sinnlich erfahrbaren Form, die präzise Ferromagnetismus heißt – nach dem lateinischen Wort ferrum für Eisen. Auch Ferromagnetismus basiert auf einer gewissen Form von Ordnung.
Viele exotische Phänomene sind mit einem Quantenkritischen Punkt verknüpft

Beim Eisen geschieht der Phasenübergang vom unmagnetischen („paramagnetischen“) zum ferromagnetischen Zustand unterhalb von 770 Grad Celsius oder 1043 K (K steht für die Kelvin-Temperaturskala). Gefriert Wasser zu Eis, so bleibt die Temperaturanzeige so lange hängen, bis das Wasser so viel Wärme abgegeben hat, dass es vollständig erstarrt ist. Dieser energieintensive Temperaturhänger heißt Phasenübergang erster Ordnung. Die Entstehung von Ferromagnetismus zeichnet sich dagegen durch Abkühlen ohne einen solchen Hänger aus. Dieses über die Temperaturskala gleitende Verhalten ist das Kennzeichen eines Phasenübergangs zweiter Ordnung.

Mit solchen Phasenübergängen zweiter Ordnung hat auch das Phänomen zu tun, dem die Dresdner Physiker auf der Spur sind. Es heißt Quantenkritischer Punkt, und es existiert eigentlich nur am absoluten Temperaturnullpunkt. „An einem Quantenkritischen Punkt ist das Merkwürdige, dass er sich bei viel höheren Temperaturen auswirkt“, sagt der Doktorand Alexander Steppke: „Viele exotische Phänomene sind damit verknüpft.“ Eines davon ist die immer noch rätselhafte Hochtemperatur-Supraleitung, die sich in vergleichsweise warmen Temperaturgefilden bis zu 135 Kelvin (minus 138 Grad Celsius) wohlfühlt.

Ein Quantenkritischer Punkt zeichnet sich allgemein dadurch aus, dass die Grenze zwischen zwei verschiedenen Quantenphasen verschwindet. Im Fall der Dresdner kann sich die Probe an diesem Punkt nicht mehr entscheiden, ob sie unmagnetisch oder ferromagnetisch sein will. Grundsätzlich darf bei so einem Quantenphasenübergang nicht mehr wie beim Eis Wärmeenergie den Antrieb liefern, denn solche Übergänge existieren nur am absoluten Temperaturnullpunkt. Das sind 0 Kelvin oder minus 273,15 Grad Celsius.

Fremdatome im Kristallgitter setzen das Material unter einen negativen Druck

Die Dresdner müssen also einen anderen Hebel ansetzen, und das ist der Druck. Eine mechanische Presse scheidet dabei jedoch aus. „Erstens benötigen wir gewaltige Drücke im Bereich von Gigapascal“, sagt Steppke. Mit solchem Druck presst die Industrie Kohlenstoff zu Diamant. „Zweitens brauchen wir diese Drücke auch noch in negativer Form“, erklärt der Physiker weiter: „Wir müssen die Probe sozusagen kraftvoll entspannen.“ Das geht nur mit „chemischem Druck“. Die Dresdner bauen dazu gezielt Fremdatome in den Kristall ihrer Proben ein, die den Druck im räumlichen Kristallgitter senken. Die Kunst besteht darin, trotz dieser gewollten Verunreinigung die sonstigen Eigenschaften der Proben nicht zu verändern.

Für ihr Experiment musste Manuel Brandos Gruppe noch einen Weltrekord schaffen. Dafür musste ihr Kollege Christoph Geibel mit seiner „Kompetenzgruppe Materialentwicklung“ am Institut ein nie dagewesenes Material designen. Anders als zum Beispiel Eisen wird dieses erst in der Nähe des absoluten Temperaturnullpunkts ferromagnetisch. Dank ihrer Erfahrung gelang dies, sagt Brando: „Das neue Material Ytterbiumnickelphosphid hat die niedrigste Curie-Temperatur, die je beobachtet wurde!“ Diese nach dem französischen Physiknobelpreisträger Pierre Curie benannte Temperatur beschreibt den Punkt, an dem der Phasenübergang zum Ferromagneten stattfindet. Was aber erzeugt den Magnetismus?

Spins können sich auch am absoluten Nullpunkt noch drehen

Dafür sind magnetische Atome im Kristall verantwortlich, hier das Ytterbium. An solchen Atomen sitzen Elektronen, die sich wie drehbare, winzige Elementarmagnete verhalten. Ihre „Spins“, die für ihren Mikromagnetismus sorgen, spüren sich gegenseitig. Beim Ferromagneten drehen sich deshalb alle diese Spins in eine Richtung, und ihre kollektive Ordnung sorgt für den Magnetismus im Großen. Beim Ytterbiumnickelphosphid, kurz YbNi4P2, liegt nun dieser ferromagnetische Übergang so nahe am absoluten Temperaturnullpunkt, dass ein weiterer berühmter Quanteneffekt zuschlägt: die Heisenbergsche Unschärferelation. Eigentlich wäre bei dieser extremen Kälte nämlich gar kein Phasenübergang mehr möglich. Denn wo Wärmeenergie fehlt, friert jegliche Bewegung ein. Die Elektronenspins könnten also gar nicht mehr zwischen Ferromagnetismus und unmagnetischer Unordnung hin und her schalten. „Wegen der Unschärferelation ist aber ihre Energie nicht ganz genau bestimmt“, sagt Steppke, „und deshalb können sie sich doch drehen.“

Mit diesem ausgefeilten Experiment gelang es den Dresdnern erstmals, einen quantenkritischen Punkt im Übergang zwischen Ferromagnetismus und dem unmagnetischen Zustand in einem Metall zu beobachten. Gängige Theorien hatten dessen Existenz bislang ausgeschlossen, sie müssen nun verbessert werden. Die Dresdner Grundlagenforscher hoffen, dass sie mit solchen Experimenten auch zur Lösung des Rätsels um die Hochtemperatur-Supraleitung beitragen können.
Ansprechpartner
Dr. Manuel Brando,
Max-Planck-Institut für chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-2324
Fax: +49 351 4646-2360
E-Mail: manuel.Brando@­cpfs.mpg.de

Originalpublikation
Alexander Steppke, Robert Küchler, Stefan Lausberg, Edit Lengyel, Lucia Steinke, Robert Borth, Thomas Lühmann, Cornelius Krellner, Michael Nicklas, Christoph Geibel, Frank Steglich, Manuel Brando
Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−x Asx)2
Science, 22. Februar 2013, DOI: 0.1126/science.1230583

Dr. Manuel Brando | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6961932/quantenkritischer_punkt_ferromagnetismus

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie