Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universum: Ein präzises astronomisches Tachometer

05.09.2008
Das Schicksal des Universums steht buchstäblich in den Sternen. Denn es sind die Lichtsignale weit entfernter Galaxien und Sterne, aus denen Astronomen und Kosmologen ableiten, dass das Weltall nicht statisch ist, sondern sich kontinuierlich ausdehnt.

Neuesten Messungen zufolge vollzieht sich diese Expansion sogar beschleunigt. Doch diesen Schlüssen liegen theoretische Modelle zugrunde, die noch keineswegs bewiesen sind. Die für modellunabhängige Auswertungen notwendigen Genauigkeiten bei der Bestimmung der Driftgeschwindigkeit können mit den Spektrographen derzeitiger Teleskope noch nicht erreicht werden.

Ein internationales Wissenschaftlerteam aus Astronomen (European Southern Observatory Garching, Centre for Astrophysics and Supercomputing Swinburne University Australien, Kiepenheuer-Institut für Sonnenphysik Freiburg) und Quantenphysikern (Max-Planck-Institut für Quantenoptik Garching, Menlo Systems GmbH Martinsried) hat nun am VTT-Sonnen-Teleskop auf Teneriffa einen Prototypen getestet, bei dem erstmals die Frequenzkammtechnik, für deren Entwicklung Prof. Th. W. Hänsch 2005 den Nobelpreis für Physik bekam, zur Kalibrierung von Spektrographen eingesetzt wird.

Damit erzielten die Forscher für Geschwindigkeitsänderungen stellarer Objekte bereits Genauigkeiten von rund neun Metern in der Sekunde. Durch weitere Verbesserung des Verfahrens können Genauigkeiten von Zentimetern pro Sekunden erreicht werden, mit denen nicht nur die These von der beschleunigten Ausdehnung des Weltalls überprüft, sondern auch erdähnliche extraterrestrische Planeten nachgewiesen werden könnten. (Science, 5. September 2008)

Bereits in den 20er Jahren des letzten Jahrhunderts entdeckte der Astronom Edwin Hubble, dass die Spektrallinien im Licht weit entfernter Himmelskörper zu größeren Wellenlängen hin verschoben sind. Diese "Rotverschiebung" beruht auf dem Dopplereffekt, hervorgerufen dadurch, dass sich die Objekte von der Erde entfernen. (Dieses Phänomen kennt der Laie beispielsweise von Sirenen: wenn sie sich nähern, wird der Ton, d.h. die Frequenz höher, wenn sie sich entfernen, werden Ton und Frequenz niedriger.) Aus dieser Beobachtung schloss Hubble, dass sich das Universum unaufhaltsam ausdehnt. Verfolgt man diese Entwicklung zurück, dann ist das Weltall vor etwa 15 Milliarden Jahren bei einer Art "Urknall" entstanden.

Im Licht der Allgemeinen Relativitätstheorie von Albert Einstein legen neueste Messungen der kosmischen Hintergrundstrahlung mit der Wilkinson Microwave Anisotropy Probe (WMAP) nahe, dass sich diese Ausdehnung immer schneller, d.h. beschleunigt, vollzieht. Eine geheimnisvolle "Dunkle Energie" bewirkt im Gegensatz zu allen anderen Energieformen nicht den gravitativen Zusammenhalt des Universums, sondern treibt es auseinander. Nur eine direkte Messung der Änderung der Driftgeschwindigkeit des Weltalls erlaubt es, diese Vorstellungen zu überprüfen und damit auch einen Aussage über die Gültigkeit der experimentell nicht sehr gut belegten Allgemeinen Relativitätstheorie zu erhalten. Dazu muss man die Bewegungen entfernter Galaxien mit einer Genauigkeit von einigen Zentimetern pro Sekunde bestimmen und die Objekte über mehrere Jahrzehnte beobachten. Mit den Messfehlern, die dem gegenwärtigen Stand der Technik entsprechen, bräuchte man dafür etwa 10 000 Jahre.

Solche extrem genauen Messungen soll das zukünftige "European Extremely Large Telescope" (E-ELT) durchführen, das gegenwärtig von der ESO entworfen wird. Der dafür konzipierte CODEX-Spektrograph muss zu diesem Zweck mit einer Genauigkeit von 1 zu 300 Milliarden kalibriert sein - das ist, als würde man den Umfang der Erde auf einen halben Millimeter genau messen.

Jetzt haben Physiker des MPQ und der Firma Menlo System am VTT (Vacuum Tower Telescope) Sonnen-Teleskop auf Teneriffa gezeigt, dass sich dieses Ziel mit Hilfe der Frequenzkammtechnik erreichen lässt. "Die Zeit ist die physikalische Größe, die am genauesten bestimmt werden kann", erläutert Dr. Udem, der das Projekt am MPQ leitet. "Die heutigen Cäsium-Atomuhren würden nach einer Million Jahren nur etwa eine Sekunde falsch gehen". Bei dem Frequenzkamm wird Laserlicht in ein Regenbogenspektrum aus ca. einer Million äquidistanter Spektrallinien umgewandelt, deren Frequenz jeweils über die Atomuhr normiert ist. Vergleicht man dieses "Lineal" mit den Spektrallinien eines Sterns, dann werden deren Frequenzen ebenfalls mit der Genauigkeit der Atomuhr bestimmt.

Die so kalibrierten Spektrographen werden Geschwindigkeitsänderungen so genau nachweisen, dass sie Fragen nach der Entwicklung des Kosmos beantworten können.

Sie werden aber auch die Suche nach erdähnlichen Planeten außerhalb unseres Sonnensystems erleichtern. Denn diese verraten sich nur indirekt: Sie geben ihrem Zentralgestirn einen kleinen Schubs, so dass es sich, je nach Position des Planeten, mal auf die Erde zu und mal von ihr weg bewegt. Diese Auslenkung ist allerdings extrem gering - sie liegt nur bei einigen Zentimetern pro Sekunde. "Wir hoffen, dass wir in Zukunft so kleine Verschiebungen messen können", sagt Dr. Udem. "Zum Vergleich: Die Sonne legt bei ihrem Weg um das galaktische Zentrum 220 Kilometer in der Sekunde zurück. Der Rückstoß, den die Erde auf die Sonne ausübt, beträgt dagegen nur zehn Zentimeter pro Sekunde."

Bereits mit dem hier verwendeten Prototyp wurde eine Genauigkeit für Geschwindigkeitsänderungen von etwa neun Meter pro Sekunde erreicht, was den jetzigen Stand der Technik übersteigt. "Wir haben hier an einem Sonnen-Teleskop getestet, das starke systematische Schwankungen aufweist, weil es nicht für diesen Zweck ausgelegt ist", sagt Udem. "Wir sind sehr zuversichtlich, dass wir mit einem optimalen Aufbau - einem stabileren Teleskop und einem verbesserten Frequenzkamm - auch Geschwindigkeitsschwankungen von einem Zentimeter pro Sekunde nachweisen können."

Originalveröffentlichung:
Tilo Steinmetz et al.
Laser Frequency Combs for Astronomical Observations
Science, 5 September 2008
Kontakt:
Dr. Thomas Udem
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 282
Fax: +49 - 89 / 32905 - 311
E-Mail: thomas.udem@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
E-Mail:
olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien
17.01.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie