Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus der Universität Heidelberg Detektoren, Prozessoren und Software für den LHC

15.09.2008
Wissenschaftler der Heidelberger Ruprecht-Karls-Universität sind an drei der vier großen Experimente am Large Hadron Collider (LHC) in Genf beteiligt - Nach der Planungs- und Bauphase von Geräten in Heidelberg für den LHC freuen sich die Physiker nun auf die Experimente

Seit einigen Tagen kreisen die Protonen in dem 27 Kilometer langen Ring des größten Teilchenbeschleunigers der Welt, dem Large Hadron Collider (LHC) in Genf.

Auch wenn die Protonen noch nicht auf Kollisionskurs sind, so stehen die ersten Experimente am LHC unmittelbar bevor, und mit dabei sind mehrere Forschergruppen der Heidelberger Ruprecht-Karls-Universität. "Arbeitsgruppen aus Heidelberg sind führend an drei der vier großen Experimente am LHC beteiligt. Eine vergleichbar breite Beteiligung gibt es an keiner anderen Universität weltweit", hebt Professor Karlheinz Meier vom Kirchhoff-Institut für Physik (KIP) der Ruprecht-Karls-Universität das Engagement der Heidelberger Wissenschaftler an den Experimenten hervor.

So haben in den vergangenen 10 bis 15 Jahren gut 100 Wissenschaftler, darunter zahlreiche Doktoranden und Diplomanden, Geräte oder Software für die verschiedenen Experimente geplant und gebaut. Mit insgesamt 22,9 Millionen Euro wurden die Beteiligungen an den drei Experimenten durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. Die Universität trägt durch ihre Grundausstattung ganz erheblich zum Gelingen solcher Projekte bei. Die Helmholtz-Gemeinschaft (HGF), die Deutsche Forschungsgemeinschaft (DFG) und die Europäische Kommission sind weitere Mittelgeber.

Zusammen mit Professor Hans-Christian Schultz-Coulon leitet Karlheinz Meier die Arbeitsgruppe am KIP, die einen wichtigen Teil des so genannten ATLAS-Experiments trägt. "ATLAS ist ein Experiment, mit dem alle Facetten von Proton-Proton-Kollisionen bei höchsten Energien untersucht werden sollen", erläutert Karlheinz Meier. ATLAS wird gemeinsam mit seinem Partner-Experiment CMS nach dem Ursprung der Masse, einem neuen Spektrum von Teilchen (der Supersymmetrie) suchen und schauen, ob der Raum bei kleinsten Abständen neue Dimensionen aufweist. Diese Themen sind von besonderer Bedeutung für das Verständnis der physikalischen Prozesse, die bei der Entstehung des Universums abliefen.

Das ATLAS-Experiment hat die zentrale Aufgabe, möglichst ausnahmslos jedes interessante Ereignis, wie etwa das Entstehen neuer, schwerer Teilchen aufzuzeichnen, und dabei keinesfalls Hinweise auf neue Physik zu verlieren. Das technische Problem liegt darin, dass die Kollisionen im Detektor 40 Millionen Mal pro Sekunde stattfinden. Die Heidelberger Arbeitsgruppe am KIP hat hierfür in den vergangenen zehn Jahren ein System gebaut, das alle Kollisionen anschaut, aber nur etwa jede tausendste als interessant klassifiziert und zur Weiterverarbeitung frei gibt. Dieses Selektionssystem kann nicht mit konventionellen Computern realisiert werden, sondern erfordert modernste Methoden der Mikroelektronik, welche die Wissenschaftler in dem hochmodernen ASIC-Labor vorfinden, das gemeinsam von der Fakultät für Physik und Astronomie sowie dem Max-Planck-Institut für Kernphysik betrieben wird. Hier entwickelten sie den so genannten Pre-Prozessor des ATLAS-Experiments. Der absolut reibungsfreie Betrieb dieses Systems ist für den Erfolg des ATLAS-Projektes von alles entscheidender Bedeutung.

Für das ALICE-Experiment, bei dem ein neuer Materiezustand, das Quark-Gluon-Plasma, hergestellt und dessen Eigenschaften verstanden werden sollen, arbeiten verschiedene Gruppen am KIP und am Physikalischen Institut der Ruperto Carola. Der Zustand des Quark-Gluon-Plasmas entsteht, wenn bei der Kollision von Atomkernen, in diesem Fall Bleikernen, die Kernbausteine Protonen und Neutronen sozusagen schmelzen und sich in ihre Komponenten (Quarks und Gluonen) auflösen. Dieser Materiezustand hat im frühen Universum, also kurz nach dem Urknall, ab einem Alter von etwa 10 Billionstel Sekunden existiert und lebte bis zu etwa 10 Millionstel Sekunden. Erst dann entstanden die normalen Teilchen wie Protonen oder Neutronen.

"Um den Zustand des frühen Universums im LHC im Experiment zu wiederholen, sind die Heidelberger Wissenschaftler mit der Entwicklung von drei großen Komponenten des ALICE-Experiments beschäftigt", berichtet die Professorin Johanna Stachel vom Physikalischen Institut, die selbst das Projekt zur Herstellung des Transition Radiation Detector leitet. Das ist ein Gasdetektor, der Spuren geladener Teilchen misst und es gleichzeitig schafft, Elektronen zu identifizieren. Hierfür sitzen direkt auf dem Detektor auf einer Fläche von 700 Quadratmetern 130 000 spezielle Mikrochips, die in Heidelberg entwickelt wurden. Die darin enthalten 250 000 Prozessoren treffen innerhalb von wenigen Millionstel Sekunden eine Vorentscheidung, ob eine Kollision interessant war und so deren Daten weiter verarbeitet werden sollen.

Zum ALICE-Experiment gehört ebenso die Time-Projection Chamber, für deren Konzeption und Bau die Heidelberger Wissenschaftler eine sehr wichtige Funktion hatten. Sie ist mit 100 Kubikmeter Volumen der größte Gasdetektor seiner Art, vermisst in drei Dimensionen die Spuren mehrerer Tausend Teilchen, die in einer Blei-Blei-Kollision produziert werden mit Submillimeter Präzision.

Das ALICE-Experiment verfügt über ein spezielles Selektionssystem, das eine komplette Analyse der Daten der Blei-Blei-Kollisionen auf einer Millisekunden-Zeitskala erlaubt, um zu entscheiden, ob die Daten gespeichert werden sollen. Dieser so genannte High Level Trigger wurde am KIP unter der Leitung von Professor Volker Lindenstruth entwickelt.

Das LHCb-Experiment (das "b" steht für "beauty") befasst sich mit dem Unterschied zwischen Teilchen und Antiteilchen. Es geht nicht zuletzt um das Problem, dass in unserem Universum fast nur Materie, aber fast keine Antimaterie vorkommt, obwohl im Urknall gleichermaßen Teilchen und Antiteilchen entstanden sind. "Wir wissen heute, dass sich die meisten der im Urknall erzeugten Teilchen und Antiteilchen gegenseitig vernichtet haben und zerstrahlt sind", erläutert Professor Ulrich Uwer vom Physikalischen Institut. Übrig geblieben ist ein kleiner Überschuss an Teilchen, der die im heutigen Universum sichtbare Materie bildet. Die ursprüngliche Symmetrie muss also verletzt worden sein.

Das LHCb-Experiment versucht, diese Symmetriebrechung, das unterschiedliche Verhalten von Teilchen und Antiteilchen, besser zu verstehen. Es untersucht den kleinen Unterschied mit so genannten "Beauty"-Teilchen beziehungsweise Antiteilchen, die paarweise am LHC in extrem großer Zahl entstehen. "Beauty"-Teilchen fliegen im LHCb-Experiment nur einige Zentimeter, bevor sie zerfallen. Sie werden nachgewiesen, indem die Flugbahnen ihrer Zerfallsprodukte im Detektor präzise aufgezeichnet werden. Eine hierfür zentrale Komponente ist der Spurdetektor aus zwölf einzelnen sechs mal fünf Meter großen Spurkammern, die insgesamt aus über 55 000 einzelnen Zählröhrchen bestehen. Ein großer Teil dieser Kammern wurde in Heidelberg gebaut, und zusätzlich wurde am ASIC-Labor ein Chip entwickelt, der die Kammersignale der durchfliegenden Teilchen 40 Millionen Mal pro Sekunde aufzeichnet und an eine Computerfarm weiterleitet. Mit in Heidelberg erstellten Software-Algorithmen werden die Signale der Spurkammern zu Teilchenbahnen zusammenfügt. So kann in wenigen Tausendsteln einer Sekunde bestimmt werden, ob in einem Ereignis potentiell ein "Beauty"-Teilchen erzeugt wurde.

"Jetzt freuen wir uns darauf, die Experimente vorzunehmen und die so gewonnenen Daten analysieren und neue physikalische Erkenntnisse erlangen zu können", blickt Johanna Stachel, die gleichzeitig auch Sprecherin des Forschungsschwerpunktes ALICE ist, in die Zukunft der Arbeiten am LHC.

Stefan Zeeh

Rückfragen bitte an:
Professor Dr. Karlheinz Meier
Kirchhoff-Institut für Physik der Universität Heidelberg
Im Neuenheimer Feld 227, 69120 Heidelberg
Tel. 06221 549831
meierk@kip.uni-heidelberg.de
Professor Dr. Johanna Stachel
Physikalisches Institut
Philosophenweg 12
69120 Heidelberg
Tel. 06221 549224
stachel@physi.uni-heidelberg.de
Professor Dr. Ulrich Uwer
Physikalisches Institut
Philosophenweg 12
69120 Heidelberg
Tel. 06221 549226
uwer @physi.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften