Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartete Sprünge in der Welt der Kontinuität

21.05.2015

Die Eigenschaften topologischer Isolatoren sind extrem schwer zu fassen. Das macht die Suche nach neuen Materialklassen schwierig. Jetzt hat ein internationales Forscherteam erstmals einen neuen Effekt in der Theorie vorhergesagt, der die Suche im Experiment erleichtern könnte.

Ob ein bestimmtes Material magnetisch ist oder Strom leitet, lässt sich problemlos feststellen. Herauszufinden, ob es sich um einen topologischen Isolator handelt, erfordert hingegen einen sehr viel höheren Aufwand. Eine aus Sicht von Physikern unbefriedigende Situation. Schließlich sind topologische Isolatoren heiße Kandidaten, wenn es darum geht, neue Bausteine für extrem leistungsfähige Computer zu entwickeln.


Topologische Isolatoren zeigen verblüffende Eigenschaften: Im Inneren leiten sie Strom so gut wie gar nicht, an der Oberfläche jedoch sehr gut. Das macht sie zu Kandidaten für die „Spintronik".

Grafik: Adriano Amaricci/SISSA

Verblüffende Eigenschaften

Topologische Isolatoren zeichnen sich durch die verblüffende Eigenschaft aus, dass sie in ihrem Inneren Strom so gut wie nicht leiten – also wie ein Isolator funktionieren. An ihrer Oberfläche fließt Strom allerdings unter bestimmten Umständen hervorragend. Wenn es gelingt, diese Eigenschaft technisch nutzbar zu machen, könnte das zum Anstoß für eine ganz neue Form der Elektronik werden: der Spintronik – und damit der Entwicklung von Quantencomputern, die exponentiell schneller sein könnten als derzeit übliche Rechner.

„Topologische Isolatoren sind allerdings schwer zu erkennen, weil wir es hier nicht mit einer konventionellen Ordnung mit langer Reichweite zu tun haben, wie beispielsweise im Fall von Ferromagneten“, sagt Professor Giorgio Sangiovanni, Professor für Theoretische Physik an der Universität Würzburg. Das macht die Suche nach neuen Materialien vergleichsweise kompliziert. Erleichtern kann diesen Prozess in Zukunft eine gemeinsame Entwicklung von Physikern der Universitäten in Würzburg, Innsbruck und Triest. In der aktuellen Ausgabe der Physical Review Letters stellen die Wissenschaftler ihre Arbeit vor.

Die Rolle der Phasenübergänge

Phasenübergänge spielen in dieser Arbeit eine wichtige Rolle. Schließlich sind sie für das komplexe Verhalten topologischer Isolatoren mit verantwortlich. Wer sich an seinen Physikunterricht erinnern kann, weiß: Wenn beispielsweise Wasser gefriert oder Eis schmilzt, handelt es sich in der Sprache der Physik um eine Phasenänderung. Was dabei auf atomarer Ebene passiert, ist bekannt: Beim Übergang von Wasser zu Eis ordnen sich die Moleküle in einer regelmäßigen Struktur an; schmilzt das Eis, wird diese Ordnung zerstört. Um die Ordnung geht es auch bei einem anderen vergleichbaren Phänomen: dem Magnetismus. Kühlt man Eisen unter einen bestimmten Wert ab – die sogenannte Curie-Temperatur – wird das Material spontan magnetisch; oberhalb dieser Temperatur verliert es diese Eigenschaft wieder. Unterhalb der Curie-Temperatur ordnen sich die magnetischen Pole alle in der gleichen Richtung; oberhalb richten sie sich zufällig aus und heben sich damit in ihrer Wirkung gegenseitig auf.

Topologische Phasenübergänge hingegen verlaufen anders: „Charakteristisch für topologische Phasenübergänge ist eine Veränderung globaler Eigenschaften des jeweiligen Materials“, sagt Professor Björn Trauzettel, Inhaber des Lehrstuhls für Theoretische Physik IV. Diese Übergänge sind kontinuierlich, das heißt: Die meisten beobachtbaren Größen verändern sich stetig, wenn man externe Parameter, beispielsweise Druck oder Temperatur, variiert. Sangiovanni und die an der Publikation beteiligten Wissenschaftler haben jetzt in ihrer Arbeit zum ersten Mal an einem mikroskopischen Modell einen topologischen Phasenübergang beschrieben, der nicht kontinuierlich verläuft – weg von einem konventionellen Isolator, hin zu einem topologischen.

Der Grund für diesen unkonventionellen sprungartigen topologischen Übergang ist bekannt: Verantwortlich dafür ist die Wechselwirkung zwischen Elektronen – ein Aspekt, der in der Standardtheorie der topologischen Isolatoren nicht berücksichtig ist. Weil diese Theorie allerdings bei vielen, bereits bekannten Klassen topologischer Isolatoren gut funktioniert, hat dieses Defizit bislang nicht gestört.

Das hat sich mittlerweile geändert: „Inzwischen suchen Wissenschaftler weltweit intensiv nach neuen topologischen Materialien, die beispielsweise nicht nur auf Halbleitern basieren“, erklärt Sangiovanni. In diesem Fall mache sich die Wechselwirkung zwischen Elektronen deutlich bemerkbar. Und in diesem Fall – das zeigt die jetzt vorgelegte Theorie – liefert die sogenannte Coulomb-Wechselwirkung „eindeutigere Signaturen des topologischen Übergangs“, wie der Physiker sagt. Somit lasse sich der Übergang experimentell einfacher erkennen und charakterisieren.

First-Order Character and Observable Signatures of Topological Quantum Phase Transitions. A. Amaricci, J. C. Budich, M. Capone, B. Trauzettel, and G. Sangiovanni. DOI: 10.1103/PhysRevLett.114.185701

Topologische Isolatoren in Würzburg

Die Forschung an topologischen Isolatoren an der Universität Würzburg hat Tradition. Professor Laurens Molenkamp, Inhaber des Lehrstuhls für Experimentelle Physik III war der weltweit erste Forscher, dem die experimentelle Realisierung von topologischen Isolatoren gelang. Im Jahr 2007 konnte er sie zum ersten Mal in seinem Labor an der Universität Würzburg herstellen.

Außerdem soll in Würzburg in absehbarer Zeit eine Forschungsaktivität starten, an der sowohl Vertreter der experimentellen als auch der theoretischen Physik beteiligt sein werden. Koordiniert wird die Gruppe von den Würzburger Professoren Ralph Claessen, Inhaber des Lehrstuhls für Experimentelle Physik IV, und Björn Trauzettel, Inhaber des Lehrstuhls für Theoretische Physik IV.

Kontakt

Prof. Dr. Giorgio Sangiovanni, T: (0931) 31-89100, E-Mail: sangiovanni@physik.uni-wuerzburg.de
Prof. Dr. Björn Trauzettel, T: (0931) 31-83638, E-Mail: trauzettel@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt
21.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics