Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartete Sprünge in der Welt der Kontinuität

21.05.2015

Die Eigenschaften topologischer Isolatoren sind extrem schwer zu fassen. Das macht die Suche nach neuen Materialklassen schwierig. Jetzt hat ein internationales Forscherteam erstmals einen neuen Effekt in der Theorie vorhergesagt, der die Suche im Experiment erleichtern könnte.

Ob ein bestimmtes Material magnetisch ist oder Strom leitet, lässt sich problemlos feststellen. Herauszufinden, ob es sich um einen topologischen Isolator handelt, erfordert hingegen einen sehr viel höheren Aufwand. Eine aus Sicht von Physikern unbefriedigende Situation. Schließlich sind topologische Isolatoren heiße Kandidaten, wenn es darum geht, neue Bausteine für extrem leistungsfähige Computer zu entwickeln.


Topologische Isolatoren zeigen verblüffende Eigenschaften: Im Inneren leiten sie Strom so gut wie gar nicht, an der Oberfläche jedoch sehr gut. Das macht sie zu Kandidaten für die „Spintronik".

Grafik: Adriano Amaricci/SISSA

Verblüffende Eigenschaften

Topologische Isolatoren zeichnen sich durch die verblüffende Eigenschaft aus, dass sie in ihrem Inneren Strom so gut wie nicht leiten – also wie ein Isolator funktionieren. An ihrer Oberfläche fließt Strom allerdings unter bestimmten Umständen hervorragend. Wenn es gelingt, diese Eigenschaft technisch nutzbar zu machen, könnte das zum Anstoß für eine ganz neue Form der Elektronik werden: der Spintronik – und damit der Entwicklung von Quantencomputern, die exponentiell schneller sein könnten als derzeit übliche Rechner.

„Topologische Isolatoren sind allerdings schwer zu erkennen, weil wir es hier nicht mit einer konventionellen Ordnung mit langer Reichweite zu tun haben, wie beispielsweise im Fall von Ferromagneten“, sagt Professor Giorgio Sangiovanni, Professor für Theoretische Physik an der Universität Würzburg. Das macht die Suche nach neuen Materialien vergleichsweise kompliziert. Erleichtern kann diesen Prozess in Zukunft eine gemeinsame Entwicklung von Physikern der Universitäten in Würzburg, Innsbruck und Triest. In der aktuellen Ausgabe der Physical Review Letters stellen die Wissenschaftler ihre Arbeit vor.

Die Rolle der Phasenübergänge

Phasenübergänge spielen in dieser Arbeit eine wichtige Rolle. Schließlich sind sie für das komplexe Verhalten topologischer Isolatoren mit verantwortlich. Wer sich an seinen Physikunterricht erinnern kann, weiß: Wenn beispielsweise Wasser gefriert oder Eis schmilzt, handelt es sich in der Sprache der Physik um eine Phasenänderung. Was dabei auf atomarer Ebene passiert, ist bekannt: Beim Übergang von Wasser zu Eis ordnen sich die Moleküle in einer regelmäßigen Struktur an; schmilzt das Eis, wird diese Ordnung zerstört. Um die Ordnung geht es auch bei einem anderen vergleichbaren Phänomen: dem Magnetismus. Kühlt man Eisen unter einen bestimmten Wert ab – die sogenannte Curie-Temperatur – wird das Material spontan magnetisch; oberhalb dieser Temperatur verliert es diese Eigenschaft wieder. Unterhalb der Curie-Temperatur ordnen sich die magnetischen Pole alle in der gleichen Richtung; oberhalb richten sie sich zufällig aus und heben sich damit in ihrer Wirkung gegenseitig auf.

Topologische Phasenübergänge hingegen verlaufen anders: „Charakteristisch für topologische Phasenübergänge ist eine Veränderung globaler Eigenschaften des jeweiligen Materials“, sagt Professor Björn Trauzettel, Inhaber des Lehrstuhls für Theoretische Physik IV. Diese Übergänge sind kontinuierlich, das heißt: Die meisten beobachtbaren Größen verändern sich stetig, wenn man externe Parameter, beispielsweise Druck oder Temperatur, variiert. Sangiovanni und die an der Publikation beteiligten Wissenschaftler haben jetzt in ihrer Arbeit zum ersten Mal an einem mikroskopischen Modell einen topologischen Phasenübergang beschrieben, der nicht kontinuierlich verläuft – weg von einem konventionellen Isolator, hin zu einem topologischen.

Der Grund für diesen unkonventionellen sprungartigen topologischen Übergang ist bekannt: Verantwortlich dafür ist die Wechselwirkung zwischen Elektronen – ein Aspekt, der in der Standardtheorie der topologischen Isolatoren nicht berücksichtig ist. Weil diese Theorie allerdings bei vielen, bereits bekannten Klassen topologischer Isolatoren gut funktioniert, hat dieses Defizit bislang nicht gestört.

Das hat sich mittlerweile geändert: „Inzwischen suchen Wissenschaftler weltweit intensiv nach neuen topologischen Materialien, die beispielsweise nicht nur auf Halbleitern basieren“, erklärt Sangiovanni. In diesem Fall mache sich die Wechselwirkung zwischen Elektronen deutlich bemerkbar. Und in diesem Fall – das zeigt die jetzt vorgelegte Theorie – liefert die sogenannte Coulomb-Wechselwirkung „eindeutigere Signaturen des topologischen Übergangs“, wie der Physiker sagt. Somit lasse sich der Übergang experimentell einfacher erkennen und charakterisieren.

First-Order Character and Observable Signatures of Topological Quantum Phase Transitions. A. Amaricci, J. C. Budich, M. Capone, B. Trauzettel, and G. Sangiovanni. DOI: 10.1103/PhysRevLett.114.185701

Topologische Isolatoren in Würzburg

Die Forschung an topologischen Isolatoren an der Universität Würzburg hat Tradition. Professor Laurens Molenkamp, Inhaber des Lehrstuhls für Experimentelle Physik III war der weltweit erste Forscher, dem die experimentelle Realisierung von topologischen Isolatoren gelang. Im Jahr 2007 konnte er sie zum ersten Mal in seinem Labor an der Universität Würzburg herstellen.

Außerdem soll in Würzburg in absehbarer Zeit eine Forschungsaktivität starten, an der sowohl Vertreter der experimentellen als auch der theoretischen Physik beteiligt sein werden. Koordiniert wird die Gruppe von den Würzburger Professoren Ralph Claessen, Inhaber des Lehrstuhls für Experimentelle Physik IV, und Björn Trauzettel, Inhaber des Lehrstuhls für Theoretische Physik IV.

Kontakt

Prof. Dr. Giorgio Sangiovanni, T: (0931) 31-89100, E-Mail: sangiovanni@physik.uni-wuerzburg.de
Prof. Dr. Björn Trauzettel, T: (0931) 31-83638, E-Mail: trauzettel@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise