Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

… und Einstein hat immer noch recht

17.09.2014

Relativistische Zeitdehnung mit absoluter Methode präzise bestätigt

Mit Hilfe des optischen Dopplereffekts gelang einem Physikerteam die genaueste direkte Messung der relativistischen Zeitdehnung und damit eine weitere Bestätigung der Speziellen Relativitätstheorie. Als Uhren verwendeten sie auf fast 34% der Lichtgeschwindigkeit beschleunigte Lithiumionen, die von Laserstrahlen in und entgegen der Flugrichtung „abgelesen“ werden. (PRL, 16.09.2014)


Die beteiligten Energieniveaus in 7Li+-Ionen und die Übergänge, die von den blau- bzw. rotverschobenen Laserstrahlen angeregt werden. Der Detektor registriert das Fluoreszenzlicht.

Grafik: MPIK

Eine bedeutende Konsequenz der Speziellen Relativitätstheorie von Albert Einstein ist die Zeitdilatation (Zeitdehnung): bewegte Uhren gehen relativ zu einer ruhenden Uhr langsamer. Diese Zeitdehnung wird mit Annäherung an die Lichtgeschwindigkeit immer größer. Makroskopische Uhren lassen sich aber bisher nur auf kleine Bruchteile der Lichtgeschwindigkeit beschleunigen, sodass damit eine präzise Messung der Zeitdilatation noch nicht möglich ist.

Abhilfe schaffen spezielle Atomuhren: schnelle Ionenstrahlen, die mittels Laserspektroskopie „abgelesen“ werden. Die Zeitdehnung beeinflusst nämlich auch den – aus dem Alltag bei Schallwellen bekannten – Dopplereffekt, der zu einer Verschiebung der Frequenz eines von einem bewegten Objekt ausgesandten Lichtstrahls führt. Eine präzise Messung dieser Frequenzänderung erlaubt deshalb eine präzise Bestimmung der Zeitdehnung und stellt damit auch gleichzeitig einen empfindlichen Test zur Gültigkeit der Speziellen Relativitätstheorie dar.

„Unsere Uhren waren Lithiumionen (7Li+), in denen wir zwei über einen gemeinsamen Zustand gekoppelte Übergänge mit Lasern anregten und die Fluoreszenz beobachteten“, sagt Dirk Schwalm, emeritierter Direktor am Max-Planck-Institut für Kernphysik in Heidelberg und einer der verantwortlichen Experimentatoren. Die beiden Laserstrahlen liefen mit oder entgegen dem Lithiumionenstrahl, der im Speicherring ESR des GSI Helmholtzzentrums in Darmstadt mit 33,8% der Lichtgeschwindigkeit kreiste.

„Wir mussten ‚nur‘ 2 Frequenzen präzise bestimmen, nämlich die für simultane Resonanz erforderlichen dopplerverschobenen Frequenzen der beiden Laserstrahlen, da die beiden Übergangsfrequenzen in ruhenden Lithiumionen bereits aus früheren Messungen hinreichend genau bekannt waren. Wenn Einstein recht hat, muss das Produkt der beiden Laserfrequenzen geteilt durch das Produkt der zwei Ruhefrequenzen gleich eins sein“, erläutert Schwalm die Eleganz der Methode.

Zur Bestimmung der dopplerverschobenen Frequenzen kam Doppelresonanz-Spektroskopie zum Einsatz. Dazu stellten die Physiker die Frequenz eines der Laser auf die dopplerverschobene Frequenz einer der beiden sogenannten Hyperfeinstruktur-Übergänge in dem 7Li+-Ion ein. Den anderen Laser stimmten sie über die dopplerverschobene Frequenz des anderen Hyperfeinstruktur-Übergangs durch. Bei Resonanz werden Lithiumionen mit genau definierter Geschwindigkeit über beide spektroskopischen Äste hin- und hergeschaukelt. Das führt zur Emission von Fluoreszenzlicht, das senkrecht zur Flugrichtung der Ionen beobachtet werden kann, während Ionen mit leicht abweichender Geschwindigkeit „dunkel gepumpt“ werden und so die Messung nicht beeinträchtigen.

Das Ergebnis bestätigt die Einstein‘sche Vorhersage auf zwei Milliardstel genau, rund viermal genauer als im Vorgängerexperiment, das am Heidelberger Testspeicherring bei 6,4% der Lichtgeschwindigkeit und mit einer abweichenden spektroskopischen Methode durchgeführt worden war. Das Grundprinzip der Experimente hat Einstein selbst schon vorgeschlagen. Erstmals realisiert wurde es 1938 von Ives und Stillwell, die so die Zeitdehnung mit 1%iger Genauigkeit nachweisen konnten. Der große Vorteil dieses Prinzips ist der direkte und absolute Zugang zur Zeitdehnung ohne zusätzliche Annahmen. Von Bedeutung sind diese immer genaueren Tests der Relativitätstheorie und der ihr zugrunde liegenden Lorentzinvarianz insbesondere in Hinblick auf eines der größten Ziele der gegenwärtigen theoretischen Physik, der Vereinigung von Quantentheorie und Allgemeiner Relativitätstheorie.

Originalpublikation:
Test of time dilation using stored Li+ ions as clocks at relativistic speed
B. Botermann et al., Phys. Rev. Lett. 113, 120405 (2014), DOI: 10.1103/PhysRevLett.113.120405 http://dx.doi.org/10.1103/PhysRevLett.113.120405

Kontakt:
Prof. Dr. Dirk Schwalm
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: 06221 516360
E-Mail: dirk.schwalm@mpi-hd.mpg.de

Weitere Informationen:

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.113.120405 - Synopsis: Relativity is Right on Time, Again, M. Schirber, Physics
http://idw-online.de/pages/de/news239308 - Meldung zum Vorgängerexperiment

Dr. Bernold Feuerstein | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten