Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

… und Einstein hat immer noch recht

17.09.2014

Relativistische Zeitdehnung mit absoluter Methode präzise bestätigt

Mit Hilfe des optischen Dopplereffekts gelang einem Physikerteam die genaueste direkte Messung der relativistischen Zeitdehnung und damit eine weitere Bestätigung der Speziellen Relativitätstheorie. Als Uhren verwendeten sie auf fast 34% der Lichtgeschwindigkeit beschleunigte Lithiumionen, die von Laserstrahlen in und entgegen der Flugrichtung „abgelesen“ werden. (PRL, 16.09.2014)


Die beteiligten Energieniveaus in 7Li+-Ionen und die Übergänge, die von den blau- bzw. rotverschobenen Laserstrahlen angeregt werden. Der Detektor registriert das Fluoreszenzlicht.

Grafik: MPIK

Eine bedeutende Konsequenz der Speziellen Relativitätstheorie von Albert Einstein ist die Zeitdilatation (Zeitdehnung): bewegte Uhren gehen relativ zu einer ruhenden Uhr langsamer. Diese Zeitdehnung wird mit Annäherung an die Lichtgeschwindigkeit immer größer. Makroskopische Uhren lassen sich aber bisher nur auf kleine Bruchteile der Lichtgeschwindigkeit beschleunigen, sodass damit eine präzise Messung der Zeitdilatation noch nicht möglich ist.

Abhilfe schaffen spezielle Atomuhren: schnelle Ionenstrahlen, die mittels Laserspektroskopie „abgelesen“ werden. Die Zeitdehnung beeinflusst nämlich auch den – aus dem Alltag bei Schallwellen bekannten – Dopplereffekt, der zu einer Verschiebung der Frequenz eines von einem bewegten Objekt ausgesandten Lichtstrahls führt. Eine präzise Messung dieser Frequenzänderung erlaubt deshalb eine präzise Bestimmung der Zeitdehnung und stellt damit auch gleichzeitig einen empfindlichen Test zur Gültigkeit der Speziellen Relativitätstheorie dar.

„Unsere Uhren waren Lithiumionen (7Li+), in denen wir zwei über einen gemeinsamen Zustand gekoppelte Übergänge mit Lasern anregten und die Fluoreszenz beobachteten“, sagt Dirk Schwalm, emeritierter Direktor am Max-Planck-Institut für Kernphysik in Heidelberg und einer der verantwortlichen Experimentatoren. Die beiden Laserstrahlen liefen mit oder entgegen dem Lithiumionenstrahl, der im Speicherring ESR des GSI Helmholtzzentrums in Darmstadt mit 33,8% der Lichtgeschwindigkeit kreiste.

„Wir mussten ‚nur‘ 2 Frequenzen präzise bestimmen, nämlich die für simultane Resonanz erforderlichen dopplerverschobenen Frequenzen der beiden Laserstrahlen, da die beiden Übergangsfrequenzen in ruhenden Lithiumionen bereits aus früheren Messungen hinreichend genau bekannt waren. Wenn Einstein recht hat, muss das Produkt der beiden Laserfrequenzen geteilt durch das Produkt der zwei Ruhefrequenzen gleich eins sein“, erläutert Schwalm die Eleganz der Methode.

Zur Bestimmung der dopplerverschobenen Frequenzen kam Doppelresonanz-Spektroskopie zum Einsatz. Dazu stellten die Physiker die Frequenz eines der Laser auf die dopplerverschobene Frequenz einer der beiden sogenannten Hyperfeinstruktur-Übergänge in dem 7Li+-Ion ein. Den anderen Laser stimmten sie über die dopplerverschobene Frequenz des anderen Hyperfeinstruktur-Übergangs durch. Bei Resonanz werden Lithiumionen mit genau definierter Geschwindigkeit über beide spektroskopischen Äste hin- und hergeschaukelt. Das führt zur Emission von Fluoreszenzlicht, das senkrecht zur Flugrichtung der Ionen beobachtet werden kann, während Ionen mit leicht abweichender Geschwindigkeit „dunkel gepumpt“ werden und so die Messung nicht beeinträchtigen.

Das Ergebnis bestätigt die Einstein‘sche Vorhersage auf zwei Milliardstel genau, rund viermal genauer als im Vorgängerexperiment, das am Heidelberger Testspeicherring bei 6,4% der Lichtgeschwindigkeit und mit einer abweichenden spektroskopischen Methode durchgeführt worden war. Das Grundprinzip der Experimente hat Einstein selbst schon vorgeschlagen. Erstmals realisiert wurde es 1938 von Ives und Stillwell, die so die Zeitdehnung mit 1%iger Genauigkeit nachweisen konnten. Der große Vorteil dieses Prinzips ist der direkte und absolute Zugang zur Zeitdehnung ohne zusätzliche Annahmen. Von Bedeutung sind diese immer genaueren Tests der Relativitätstheorie und der ihr zugrunde liegenden Lorentzinvarianz insbesondere in Hinblick auf eines der größten Ziele der gegenwärtigen theoretischen Physik, der Vereinigung von Quantentheorie und Allgemeiner Relativitätstheorie.

Originalpublikation:
Test of time dilation using stored Li+ ions as clocks at relativistic speed
B. Botermann et al., Phys. Rev. Lett. 113, 120405 (2014), DOI: 10.1103/PhysRevLett.113.120405 http://dx.doi.org/10.1103/PhysRevLett.113.120405

Kontakt:
Prof. Dr. Dirk Schwalm
Max-Planck-Institut für Kernphysik, Heidelberg
Tel: 06221 516360
E-Mail: dirk.schwalm@mpi-hd.mpg.de

Weitere Informationen:

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.113.120405 - Synopsis: Relativity is Right on Time, Again, M. Schirber, Physics
http://idw-online.de/pages/de/news239308 - Meldung zum Vorgängerexperiment

Dr. Bernold Feuerstein | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte