Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Unberechenbarkeit von Elektronensystemen

24.08.2009
Theoretische Physiker des Max-Planck-Instituts für Quantenoptik decken Grenzen der Dichtefunktionaltheorie mit Methoden der Quanteninformationstheorie auf.

Elektrische und magnetische Eigenschaften von Festkörpern entziehen sich einer exakten Berechnung. Denn die komplexen Wechselwirkungen der vielen Elektronen, welche diese Phänomene hervorrufen, machen den leistungsfähigsten klassischen Computern zu schaffen. Das zentrale Problem dabei ist, den Grundzustand der Elektronen, die sich im Feld der positiv geladenen Ionen bewegen, zu bestimmen.

Die am weitesten verbreitete Methode zur Behandlung solcher Systeme ist die Dichtefunktionaltheorie, die das Vielteilchenproblem auf eine Einteilchen-Wechselwirkung reduziert. Wie Dr. Norbert Schuch, Wissenschaftler in der Theorie-Abteilung von Prof. Ignacio Cirac am Max-Planck-Institut für Quantenoptik in Garching, und Prof. Frank Verstraete von der Universität Wien, in der Zeitschrift Nature Physics berichten (DOI: 10.1038/NPHYS1370), gibt es für die Anwendbarkeit dieser Theorie jedoch fundamentale Grenzen.

Der Beweis gelang den Wissenschaftlern mit Methoden der Quanteninformationstheorie, was zeigt, dass diese Methoden auch jenseits der Entwicklung von Quantencomputern weitreichende Einsichten liefern können.

Eines der zentralen Probleme der Quantenmechanik ist die Bestimmung des Grundzustands eines komplexen Systems, in dem viele Elektronen miteinander in Wechselwirkung stehen. Ein Beispiel dafür aus der Chemie ist die Geometrie ausgedehnter Moleküle: die räumliche Anordnung der Atome im Molekül ist diejenige, für die die Energie der Elektronen, die sich im Feld der Kerne bewegen, minimal wird - aus der Berechnung des Grundzustands der Elektronen lassen sich somit Aussagen über die dreidimensionale Struktur des Moleküls ableiten.

Ähnlich verhält es sich bei ausgedehnten Festkörpern. Deren elektrische und magnetische Eigenschaften, einschließlich so ausgefallener Phänomene wie der Hochtemperatur-Supraleitung, sind letztendlich auf die Bewegung der Elektronen in einem periodischen Potential zurückzuführen, das von den positiv geladenen 'Restatomen', d.h. Ionen, im Kristallgitter gebildet wird.

Die Dichtefunktionaltheorie (DFT) nutzt aus, dass die komplizierte Wechselwirkung der Elektronen miteinander in all diesen Fällen die gleiche ist und fasst sie in einer Art 'Black Box', dem sogenannten "universalen Funktional", zusammen. Mit Hilfe dieses Funktionals lässt sich nun im Prinzip jedes beliebige Vielelektronen-Problem als Einteilchen-Problem umschreiben, das sich dann verhältnismäßig einfach lösen lässt. Die Herausforderung besteht darin, dieses Funktional zu finden, und in der Praxis wird je nach Fragestellung auf unterschiedliche Näherungen zurückgegriffen.

Schuch und Verstraete gehen in ihrer Arbeit nun der Frage nach, wo die Grenzen für die Anwendbarkeit der DFT liegen: Ist es möglich, dieses universale Funktional, das die Behandlung von Vielelektronensystemen erheblich vereinfachen würde, zu finden - oder gibt es fundamentale Schranken, die dies verbieten? Sie verwenden dabei Methoden der Quanten-Komplexitätstheorie, eines Untergebiets der Quanteninformationstheorie: Hier geht es darum, Probleme nach ihrem Schwierigkeitsgrad zu klassifizieren, insbesondere in Hinsicht auf die Frage, ob sie von Quantencomputern effizient gelöst werden können. Während Quantencomputer z.B. die Zeitentwicklung von Quantensystemen meist effizient simulieren können, stellen Grundzustände komplexer Quantensysteme auch für Quantencomputer ein schwieriges Problem dar.

In ihrer Arbeit weisen Schuch und Verstraete zum einen nach, dass auch Grundzustände von Vielelektronensystemen für Quantencomputer schwer zu berechnen sind. Im Widerspruch dazu können diese Probleme jedoch unter Verwendung der Dichtefunktionaltheorie, sofern das universelle Funktional bekannt ist, sogar leicht mit klassischen Computern berechnet werden. Dies beweist, dass es in diesen Fällen prinzipiell unmöglich ist, das Funktional zu berechnen und stattdessen fallspezifische Näherungen unumgänglich sind. Die ansonsten häufig verwendete Dichtefunktionaltheorie stößt hier also an fundamentale Grenzen.

[Olivia Meyer-Streng/Norbert Schuch]

Originalveröffentlichung:
Norbert Schuch and Frank Verstraete
"Computational Complexity of interacting electrons and fundamental limitations
of Density Functional Theory"
Nature Physics, Advance Online Publication, DOI: 10.1038/NPHYS1370
Kontakt:
Dr. Norbert Schuch
Max-Planck-Institut für Quantenoptik
Abteilung Theorie
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 105
Fax: +49 - 89 / 32905 200
E-Mail: norbert.schuch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle
16.10.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Kalte Moleküle auf Kollisionskurs
13.10.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise