Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Schalter für Supraleiter

01.07.2011
Terahertzpulse unterbrechen die verlustfreie Stromleitung vorübergehend

Ein Hochtemperatur-Supraleiter lässt sich nun innerhalb einer Billionstel Sekunde an- und abschalten – 100 Jahre nach der Entdeckung der Supraleitung und 25 Jahre nach der ersten Realisierung eines Hochtemperatur-Supraleiters.


Mit einem ultrakurzen Terahertz-Puls (gelb oben) wird der supraleitende Transport zwischen den Schichten eines Kuprat-Kristalls (zwei Schichten, rote und blaue Kugeln stellen die Sauerstoff- bzw. Kupfer-Atome dar) gesteuert. Auf diese Weise lässt sich die dreidimensionale Supraleitung sehr schnell an- und ausschalten (orangene Kugeln stellen Elektronen dar). © J.M. Harms, Max-Planck Forschungsgruppe für Strukturelle Dynamik, Hamburg

Ein Team um Physiker der Universität Oxford und der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg hat den Schalter mit extrem kurzen und starken Terahertzpulsen realisiert. Dieses Experiment eröffnet zum einen die Möglichkeit, mehr über die noch immer nicht geklärte Ursache für diese Art der Supraleitung zu erfahren. Zum anderen deuten sich Anwendungsmöglichkeiten für eine zukünftige ultraschnelle Elektronik an.

Supraleitung ist einer der erstaunlichsten physikalischen Effekte. Jeder elektrische Leiter besitzt einen Widerstand. Doch einige Materialien verlieren ihren Widerstand vollständig, wenn man sie unter eine charakteristische Temperatur abkühlt. Dann fließt der Strom vollkommen verlustfrei. Als der niederländische Physiker Heike Kamerlingh Onnes diesen Effekt 1911 an Quecksilber entdeckte, glaubte er zunächst an einen Fehler seines Messinstruments, bevor ihm die Tragweite seiner Jahrhundertentdeckung bewusst wurde.

Allerdings muss man „normale“ Leiter, wie Quecksilber oder Blei, fast bis an den absoluten Nullpunkt bei minus 273,16 Grad Celsius abkühlen, damit sie supraleitend werden. Es war deshalb eine Sensation, als Johannes Georg Bednorz und Karl Alexander Müller 1986 ein keramisches Material vorstellten, das schon bei minus 248 Grad Celsius supraleitend wurde. Seitdem sind diese kalten Leiter ein heißes Thema bei Grundlagenforschern und Anwendern. Der ultraschnelle Schalter, den die Forschungsgruppe um Andrea Cavalleri, Leiter der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg, nun entwickelt hat, stellt hier eine weitere verblüffende Entdeckung in diesem Gebiet dar.

Der von den Hamburger Wissenschaftlern verwendete Hochtemperatur-Supraleiter ist seit langem bekannt. Es ist ein Kristall, bestehend besteht aus Lanthan-Kuprat (La2CuO4) mit einer fest definierten Beimengung von Strontium (La1,84Sr0,16CuO4). Seine Übergangstemperatur liegt bei minus 233 Grad Celsius. Auf welche Weise die Supraleitung darin zustande kommt, ist zwar noch nicht abschließend geklärt, aber wesentliche Elemente sind bekannt: „Im Innern dieses Kristalls bildet das Kuprat Ebenen, die übereinander liegen, ähnlich wie die Seiten eines Buches“, erklärt Cavalleri. Die Elektronen können sich nur innerhalb dieser Ebenen bewegen; der Stromtransport findet also nur in zwei Dimensionen statt.

Kühlt man das Material unter 40 Kelvin ab, so entsteht plötzlich zwischen diesen Ebenen eine Verbindung. Physiker erklären dies im Wellenbild. Demnach muss man sich die Elektronen nicht als Teilchen, sondern als Wellen vorstellen. Unterhalb der Übergangstemperatur kommt es nun dazu, dass sich die Elektronenwellen aus benachbarten Ebenen überlappen, und das ermöglicht es den elektrischen Ladungsträgern von einer Ebene zur anderen zu wechseln. Damit findet der Stromtransport plötzlich in allen drei Raumdimensionen statt: Der supraleitende Zustand ist entstanden.

Ein Terahertzpuls zerstört kurzzeitig die Kopplung der Elektronen

Cavalleri und seine Mitarbeiter fragten sich nun, ob sich dieser Transport zwischen den Schichten gezielt unterbrechen und wieder anschalten lässt. Theoretisch ist dies möglich, wenn man senkrecht zu den Schichten ein sehr starkes elektrisches Feld anlegt. „Wenn man das tut, erwärmt sich aber der Kristall, und die Supraleitung bricht zusammen“, erklärt Cavalleri. Die Lösung bestand darin, einen ultrakurzen Lichtpuls hineinzuschießen.

Dieser sogenannte Terahertzpuls ist eine elektromagnetische Welle, ähnlich wie Licht, nur mit größerer Wellenlänge. Sie führt ein elektrisches Feld mit sich, das beim Eindringen in den Kristall die Kopplung der Elektronenwellen zischen den Ebenen kurzfristig zerstört. Allerdings gelingt dies nur, wenn der Puls eine sehr hohe Feldstärke von mehreren zehntausend Volt pro Zentimeter erzeugt. Und er muss so kurz sein, dass der Kristall sich nicht erwärmt.

Solch extrem starke, ultrakurze Terahertzpulse lassen sich erst seit kurzem erzeugen. Dies ist die Aufgabe von Teammitglied Matthias Hoffmann. Stark vereinfacht gelingt dies, indem man einen ultrakurzen Laserpuls in einen Kristall aus Litiumniobat schießt. Durch einen Effekt, den Physiker optische Gleichrichtung nennen, entsteht dann in dem Kristall die gewünschte Terahertzstrahlung.

Wie erhofft gelang das Experiment, das Andreas Dienst in Oxford designed und ausgeführt hat: Für den kurzen Zeitraum von weniger als einer Pikosekunde (10-12 Sekunden), während dem der Puls den Kristall durchquerte, war die Kopplung zwischen den Ebenen und damit die Supraleitung unterbrochen, anschließend kehrte sie wieder zurück. Der Supraleiter leidet durch diesen Vorgang nicht und lässt sich beliebig oft schalten

„Das ist ein sehr spannendes Ergebnis, weil wir mit dieser Methode auch die Funktionsweise von Hochtemperatur-Supraleitern untersuchen können“, sagt Cavalleri. Darüber hinaus sind auch Anwendungen dieses Effekts denkbar. Im Grunde funktioniert der schaltbare Hochtemperatur-Supraleiter sehr ähnlich wie ein Feldeffekt-Transistor. Das ist ein Halbleiter, dessen Stromdurchlässigkeit sich durch Anlegen einer elektrischen Spannung steuern lässt. Analog wäre es denkbar, den Hochtemperatur-Supraleiter als ultraschnellen, nanoelektronischen Transistor einzusetzen, der mit Mikrowellen gesteuert wird.

Ansprechpartner

Dr. Andreas Dienst
Universität Oxford
Telefon: +44 1865 282875
E-Mail: andreas.dienst@physics.ox.ac.uk
Prof. Andrea Cavalleri
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5356
E-Mail: andrea.cavalleri@mpsd.cfel.de
Ansprechpartner
Dr. Matthias Hoffmann
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5371
E-Mail: matthias.c.hoffmann@mpsd.cfel.de
Originalpublikation
A. Dienst, M. Hoffmann, D. Fausti, J. Petersen, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri
Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor

Nature Photonics, adv. Online public., 26. Juni 2011, DOI: 10.1038/NPHOTON.2011.124

Prof. Andrea Cavalleri | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4356410/ultraschneller_schalter_supraleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie