Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Schalter für Supraleiter

01.07.2011
Terahertzpulse unterbrechen die verlustfreie Stromleitung vorübergehend

Ein Hochtemperatur-Supraleiter lässt sich nun innerhalb einer Billionstel Sekunde an- und abschalten – 100 Jahre nach der Entdeckung der Supraleitung und 25 Jahre nach der ersten Realisierung eines Hochtemperatur-Supraleiters.


Mit einem ultrakurzen Terahertz-Puls (gelb oben) wird der supraleitende Transport zwischen den Schichten eines Kuprat-Kristalls (zwei Schichten, rote und blaue Kugeln stellen die Sauerstoff- bzw. Kupfer-Atome dar) gesteuert. Auf diese Weise lässt sich die dreidimensionale Supraleitung sehr schnell an- und ausschalten (orangene Kugeln stellen Elektronen dar). © J.M. Harms, Max-Planck Forschungsgruppe für Strukturelle Dynamik, Hamburg

Ein Team um Physiker der Universität Oxford und der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg hat den Schalter mit extrem kurzen und starken Terahertzpulsen realisiert. Dieses Experiment eröffnet zum einen die Möglichkeit, mehr über die noch immer nicht geklärte Ursache für diese Art der Supraleitung zu erfahren. Zum anderen deuten sich Anwendungsmöglichkeiten für eine zukünftige ultraschnelle Elektronik an.

Supraleitung ist einer der erstaunlichsten physikalischen Effekte. Jeder elektrische Leiter besitzt einen Widerstand. Doch einige Materialien verlieren ihren Widerstand vollständig, wenn man sie unter eine charakteristische Temperatur abkühlt. Dann fließt der Strom vollkommen verlustfrei. Als der niederländische Physiker Heike Kamerlingh Onnes diesen Effekt 1911 an Quecksilber entdeckte, glaubte er zunächst an einen Fehler seines Messinstruments, bevor ihm die Tragweite seiner Jahrhundertentdeckung bewusst wurde.

Allerdings muss man „normale“ Leiter, wie Quecksilber oder Blei, fast bis an den absoluten Nullpunkt bei minus 273,16 Grad Celsius abkühlen, damit sie supraleitend werden. Es war deshalb eine Sensation, als Johannes Georg Bednorz und Karl Alexander Müller 1986 ein keramisches Material vorstellten, das schon bei minus 248 Grad Celsius supraleitend wurde. Seitdem sind diese kalten Leiter ein heißes Thema bei Grundlagenforschern und Anwendern. Der ultraschnelle Schalter, den die Forschungsgruppe um Andrea Cavalleri, Leiter der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg, nun entwickelt hat, stellt hier eine weitere verblüffende Entdeckung in diesem Gebiet dar.

Der von den Hamburger Wissenschaftlern verwendete Hochtemperatur-Supraleiter ist seit langem bekannt. Es ist ein Kristall, bestehend besteht aus Lanthan-Kuprat (La2CuO4) mit einer fest definierten Beimengung von Strontium (La1,84Sr0,16CuO4). Seine Übergangstemperatur liegt bei minus 233 Grad Celsius. Auf welche Weise die Supraleitung darin zustande kommt, ist zwar noch nicht abschließend geklärt, aber wesentliche Elemente sind bekannt: „Im Innern dieses Kristalls bildet das Kuprat Ebenen, die übereinander liegen, ähnlich wie die Seiten eines Buches“, erklärt Cavalleri. Die Elektronen können sich nur innerhalb dieser Ebenen bewegen; der Stromtransport findet also nur in zwei Dimensionen statt.

Kühlt man das Material unter 40 Kelvin ab, so entsteht plötzlich zwischen diesen Ebenen eine Verbindung. Physiker erklären dies im Wellenbild. Demnach muss man sich die Elektronen nicht als Teilchen, sondern als Wellen vorstellen. Unterhalb der Übergangstemperatur kommt es nun dazu, dass sich die Elektronenwellen aus benachbarten Ebenen überlappen, und das ermöglicht es den elektrischen Ladungsträgern von einer Ebene zur anderen zu wechseln. Damit findet der Stromtransport plötzlich in allen drei Raumdimensionen statt: Der supraleitende Zustand ist entstanden.

Ein Terahertzpuls zerstört kurzzeitig die Kopplung der Elektronen

Cavalleri und seine Mitarbeiter fragten sich nun, ob sich dieser Transport zwischen den Schichten gezielt unterbrechen und wieder anschalten lässt. Theoretisch ist dies möglich, wenn man senkrecht zu den Schichten ein sehr starkes elektrisches Feld anlegt. „Wenn man das tut, erwärmt sich aber der Kristall, und die Supraleitung bricht zusammen“, erklärt Cavalleri. Die Lösung bestand darin, einen ultrakurzen Lichtpuls hineinzuschießen.

Dieser sogenannte Terahertzpuls ist eine elektromagnetische Welle, ähnlich wie Licht, nur mit größerer Wellenlänge. Sie führt ein elektrisches Feld mit sich, das beim Eindringen in den Kristall die Kopplung der Elektronenwellen zischen den Ebenen kurzfristig zerstört. Allerdings gelingt dies nur, wenn der Puls eine sehr hohe Feldstärke von mehreren zehntausend Volt pro Zentimeter erzeugt. Und er muss so kurz sein, dass der Kristall sich nicht erwärmt.

Solch extrem starke, ultrakurze Terahertzpulse lassen sich erst seit kurzem erzeugen. Dies ist die Aufgabe von Teammitglied Matthias Hoffmann. Stark vereinfacht gelingt dies, indem man einen ultrakurzen Laserpuls in einen Kristall aus Litiumniobat schießt. Durch einen Effekt, den Physiker optische Gleichrichtung nennen, entsteht dann in dem Kristall die gewünschte Terahertzstrahlung.

Wie erhofft gelang das Experiment, das Andreas Dienst in Oxford designed und ausgeführt hat: Für den kurzen Zeitraum von weniger als einer Pikosekunde (10-12 Sekunden), während dem der Puls den Kristall durchquerte, war die Kopplung zwischen den Ebenen und damit die Supraleitung unterbrochen, anschließend kehrte sie wieder zurück. Der Supraleiter leidet durch diesen Vorgang nicht und lässt sich beliebig oft schalten

„Das ist ein sehr spannendes Ergebnis, weil wir mit dieser Methode auch die Funktionsweise von Hochtemperatur-Supraleitern untersuchen können“, sagt Cavalleri. Darüber hinaus sind auch Anwendungen dieses Effekts denkbar. Im Grunde funktioniert der schaltbare Hochtemperatur-Supraleiter sehr ähnlich wie ein Feldeffekt-Transistor. Das ist ein Halbleiter, dessen Stromdurchlässigkeit sich durch Anlegen einer elektrischen Spannung steuern lässt. Analog wäre es denkbar, den Hochtemperatur-Supraleiter als ultraschnellen, nanoelektronischen Transistor einzusetzen, der mit Mikrowellen gesteuert wird.

Ansprechpartner

Dr. Andreas Dienst
Universität Oxford
Telefon: +44 1865 282875
E-Mail: andreas.dienst@physics.ox.ac.uk
Prof. Andrea Cavalleri
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5356
E-Mail: andrea.cavalleri@mpsd.cfel.de
Ansprechpartner
Dr. Matthias Hoffmann
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5371
E-Mail: matthias.c.hoffmann@mpsd.cfel.de
Originalpublikation
A. Dienst, M. Hoffmann, D. Fausti, J. Petersen, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri
Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor

Nature Photonics, adv. Online public., 26. Juni 2011, DOI: 10.1038/NPHOTON.2011.124

Prof. Andrea Cavalleri | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4356410/ultraschneller_schalter_supraleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie