Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Schalter für Supraleiter

01.07.2011
Terahertzpulse unterbrechen die verlustfreie Stromleitung vorübergehend

Ein Hochtemperatur-Supraleiter lässt sich nun innerhalb einer Billionstel Sekunde an- und abschalten – 100 Jahre nach der Entdeckung der Supraleitung und 25 Jahre nach der ersten Realisierung eines Hochtemperatur-Supraleiters.


Mit einem ultrakurzen Terahertz-Puls (gelb oben) wird der supraleitende Transport zwischen den Schichten eines Kuprat-Kristalls (zwei Schichten, rote und blaue Kugeln stellen die Sauerstoff- bzw. Kupfer-Atome dar) gesteuert. Auf diese Weise lässt sich die dreidimensionale Supraleitung sehr schnell an- und ausschalten (orangene Kugeln stellen Elektronen dar). © J.M. Harms, Max-Planck Forschungsgruppe für Strukturelle Dynamik, Hamburg

Ein Team um Physiker der Universität Oxford und der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg hat den Schalter mit extrem kurzen und starken Terahertzpulsen realisiert. Dieses Experiment eröffnet zum einen die Möglichkeit, mehr über die noch immer nicht geklärte Ursache für diese Art der Supraleitung zu erfahren. Zum anderen deuten sich Anwendungsmöglichkeiten für eine zukünftige ultraschnelle Elektronik an.

Supraleitung ist einer der erstaunlichsten physikalischen Effekte. Jeder elektrische Leiter besitzt einen Widerstand. Doch einige Materialien verlieren ihren Widerstand vollständig, wenn man sie unter eine charakteristische Temperatur abkühlt. Dann fließt der Strom vollkommen verlustfrei. Als der niederländische Physiker Heike Kamerlingh Onnes diesen Effekt 1911 an Quecksilber entdeckte, glaubte er zunächst an einen Fehler seines Messinstruments, bevor ihm die Tragweite seiner Jahrhundertentdeckung bewusst wurde.

Allerdings muss man „normale“ Leiter, wie Quecksilber oder Blei, fast bis an den absoluten Nullpunkt bei minus 273,16 Grad Celsius abkühlen, damit sie supraleitend werden. Es war deshalb eine Sensation, als Johannes Georg Bednorz und Karl Alexander Müller 1986 ein keramisches Material vorstellten, das schon bei minus 248 Grad Celsius supraleitend wurde. Seitdem sind diese kalten Leiter ein heißes Thema bei Grundlagenforschern und Anwendern. Der ultraschnelle Schalter, den die Forschungsgruppe um Andrea Cavalleri, Leiter der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg, nun entwickelt hat, stellt hier eine weitere verblüffende Entdeckung in diesem Gebiet dar.

Der von den Hamburger Wissenschaftlern verwendete Hochtemperatur-Supraleiter ist seit langem bekannt. Es ist ein Kristall, bestehend besteht aus Lanthan-Kuprat (La2CuO4) mit einer fest definierten Beimengung von Strontium (La1,84Sr0,16CuO4). Seine Übergangstemperatur liegt bei minus 233 Grad Celsius. Auf welche Weise die Supraleitung darin zustande kommt, ist zwar noch nicht abschließend geklärt, aber wesentliche Elemente sind bekannt: „Im Innern dieses Kristalls bildet das Kuprat Ebenen, die übereinander liegen, ähnlich wie die Seiten eines Buches“, erklärt Cavalleri. Die Elektronen können sich nur innerhalb dieser Ebenen bewegen; der Stromtransport findet also nur in zwei Dimensionen statt.

Kühlt man das Material unter 40 Kelvin ab, so entsteht plötzlich zwischen diesen Ebenen eine Verbindung. Physiker erklären dies im Wellenbild. Demnach muss man sich die Elektronen nicht als Teilchen, sondern als Wellen vorstellen. Unterhalb der Übergangstemperatur kommt es nun dazu, dass sich die Elektronenwellen aus benachbarten Ebenen überlappen, und das ermöglicht es den elektrischen Ladungsträgern von einer Ebene zur anderen zu wechseln. Damit findet der Stromtransport plötzlich in allen drei Raumdimensionen statt: Der supraleitende Zustand ist entstanden.

Ein Terahertzpuls zerstört kurzzeitig die Kopplung der Elektronen

Cavalleri und seine Mitarbeiter fragten sich nun, ob sich dieser Transport zwischen den Schichten gezielt unterbrechen und wieder anschalten lässt. Theoretisch ist dies möglich, wenn man senkrecht zu den Schichten ein sehr starkes elektrisches Feld anlegt. „Wenn man das tut, erwärmt sich aber der Kristall, und die Supraleitung bricht zusammen“, erklärt Cavalleri. Die Lösung bestand darin, einen ultrakurzen Lichtpuls hineinzuschießen.

Dieser sogenannte Terahertzpuls ist eine elektromagnetische Welle, ähnlich wie Licht, nur mit größerer Wellenlänge. Sie führt ein elektrisches Feld mit sich, das beim Eindringen in den Kristall die Kopplung der Elektronenwellen zischen den Ebenen kurzfristig zerstört. Allerdings gelingt dies nur, wenn der Puls eine sehr hohe Feldstärke von mehreren zehntausend Volt pro Zentimeter erzeugt. Und er muss so kurz sein, dass der Kristall sich nicht erwärmt.

Solch extrem starke, ultrakurze Terahertzpulse lassen sich erst seit kurzem erzeugen. Dies ist die Aufgabe von Teammitglied Matthias Hoffmann. Stark vereinfacht gelingt dies, indem man einen ultrakurzen Laserpuls in einen Kristall aus Litiumniobat schießt. Durch einen Effekt, den Physiker optische Gleichrichtung nennen, entsteht dann in dem Kristall die gewünschte Terahertzstrahlung.

Wie erhofft gelang das Experiment, das Andreas Dienst in Oxford designed und ausgeführt hat: Für den kurzen Zeitraum von weniger als einer Pikosekunde (10-12 Sekunden), während dem der Puls den Kristall durchquerte, war die Kopplung zwischen den Ebenen und damit die Supraleitung unterbrochen, anschließend kehrte sie wieder zurück. Der Supraleiter leidet durch diesen Vorgang nicht und lässt sich beliebig oft schalten

„Das ist ein sehr spannendes Ergebnis, weil wir mit dieser Methode auch die Funktionsweise von Hochtemperatur-Supraleitern untersuchen können“, sagt Cavalleri. Darüber hinaus sind auch Anwendungen dieses Effekts denkbar. Im Grunde funktioniert der schaltbare Hochtemperatur-Supraleiter sehr ähnlich wie ein Feldeffekt-Transistor. Das ist ein Halbleiter, dessen Stromdurchlässigkeit sich durch Anlegen einer elektrischen Spannung steuern lässt. Analog wäre es denkbar, den Hochtemperatur-Supraleiter als ultraschnellen, nanoelektronischen Transistor einzusetzen, der mit Mikrowellen gesteuert wird.

Ansprechpartner

Dr. Andreas Dienst
Universität Oxford
Telefon: +44 1865 282875
E-Mail: andreas.dienst@physics.ox.ac.uk
Prof. Andrea Cavalleri
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5356
E-Mail: andrea.cavalleri@mpsd.cfel.de
Ansprechpartner
Dr. Matthias Hoffmann
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5371
E-Mail: matthias.c.hoffmann@mpsd.cfel.de
Originalpublikation
A. Dienst, M. Hoffmann, D. Fausti, J. Petersen, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri
Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor

Nature Photonics, adv. Online public., 26. Juni 2011, DOI: 10.1038/NPHOTON.2011.124

Prof. Andrea Cavalleri | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4356410/ultraschneller_schalter_supraleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise