Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Schalter für Supraleiter

01.07.2011
Terahertzpulse unterbrechen die verlustfreie Stromleitung vorübergehend

Ein Hochtemperatur-Supraleiter lässt sich nun innerhalb einer Billionstel Sekunde an- und abschalten – 100 Jahre nach der Entdeckung der Supraleitung und 25 Jahre nach der ersten Realisierung eines Hochtemperatur-Supraleiters.


Mit einem ultrakurzen Terahertz-Puls (gelb oben) wird der supraleitende Transport zwischen den Schichten eines Kuprat-Kristalls (zwei Schichten, rote und blaue Kugeln stellen die Sauerstoff- bzw. Kupfer-Atome dar) gesteuert. Auf diese Weise lässt sich die dreidimensionale Supraleitung sehr schnell an- und ausschalten (orangene Kugeln stellen Elektronen dar). © J.M. Harms, Max-Planck Forschungsgruppe für Strukturelle Dynamik, Hamburg

Ein Team um Physiker der Universität Oxford und der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg hat den Schalter mit extrem kurzen und starken Terahertzpulsen realisiert. Dieses Experiment eröffnet zum einen die Möglichkeit, mehr über die noch immer nicht geklärte Ursache für diese Art der Supraleitung zu erfahren. Zum anderen deuten sich Anwendungsmöglichkeiten für eine zukünftige ultraschnelle Elektronik an.

Supraleitung ist einer der erstaunlichsten physikalischen Effekte. Jeder elektrische Leiter besitzt einen Widerstand. Doch einige Materialien verlieren ihren Widerstand vollständig, wenn man sie unter eine charakteristische Temperatur abkühlt. Dann fließt der Strom vollkommen verlustfrei. Als der niederländische Physiker Heike Kamerlingh Onnes diesen Effekt 1911 an Quecksilber entdeckte, glaubte er zunächst an einen Fehler seines Messinstruments, bevor ihm die Tragweite seiner Jahrhundertentdeckung bewusst wurde.

Allerdings muss man „normale“ Leiter, wie Quecksilber oder Blei, fast bis an den absoluten Nullpunkt bei minus 273,16 Grad Celsius abkühlen, damit sie supraleitend werden. Es war deshalb eine Sensation, als Johannes Georg Bednorz und Karl Alexander Müller 1986 ein keramisches Material vorstellten, das schon bei minus 248 Grad Celsius supraleitend wurde. Seitdem sind diese kalten Leiter ein heißes Thema bei Grundlagenforschern und Anwendern. Der ultraschnelle Schalter, den die Forschungsgruppe um Andrea Cavalleri, Leiter der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg, nun entwickelt hat, stellt hier eine weitere verblüffende Entdeckung in diesem Gebiet dar.

Der von den Hamburger Wissenschaftlern verwendete Hochtemperatur-Supraleiter ist seit langem bekannt. Es ist ein Kristall, bestehend besteht aus Lanthan-Kuprat (La2CuO4) mit einer fest definierten Beimengung von Strontium (La1,84Sr0,16CuO4). Seine Übergangstemperatur liegt bei minus 233 Grad Celsius. Auf welche Weise die Supraleitung darin zustande kommt, ist zwar noch nicht abschließend geklärt, aber wesentliche Elemente sind bekannt: „Im Innern dieses Kristalls bildet das Kuprat Ebenen, die übereinander liegen, ähnlich wie die Seiten eines Buches“, erklärt Cavalleri. Die Elektronen können sich nur innerhalb dieser Ebenen bewegen; der Stromtransport findet also nur in zwei Dimensionen statt.

Kühlt man das Material unter 40 Kelvin ab, so entsteht plötzlich zwischen diesen Ebenen eine Verbindung. Physiker erklären dies im Wellenbild. Demnach muss man sich die Elektronen nicht als Teilchen, sondern als Wellen vorstellen. Unterhalb der Übergangstemperatur kommt es nun dazu, dass sich die Elektronenwellen aus benachbarten Ebenen überlappen, und das ermöglicht es den elektrischen Ladungsträgern von einer Ebene zur anderen zu wechseln. Damit findet der Stromtransport plötzlich in allen drei Raumdimensionen statt: Der supraleitende Zustand ist entstanden.

Ein Terahertzpuls zerstört kurzzeitig die Kopplung der Elektronen

Cavalleri und seine Mitarbeiter fragten sich nun, ob sich dieser Transport zwischen den Schichten gezielt unterbrechen und wieder anschalten lässt. Theoretisch ist dies möglich, wenn man senkrecht zu den Schichten ein sehr starkes elektrisches Feld anlegt. „Wenn man das tut, erwärmt sich aber der Kristall, und die Supraleitung bricht zusammen“, erklärt Cavalleri. Die Lösung bestand darin, einen ultrakurzen Lichtpuls hineinzuschießen.

Dieser sogenannte Terahertzpuls ist eine elektromagnetische Welle, ähnlich wie Licht, nur mit größerer Wellenlänge. Sie führt ein elektrisches Feld mit sich, das beim Eindringen in den Kristall die Kopplung der Elektronenwellen zischen den Ebenen kurzfristig zerstört. Allerdings gelingt dies nur, wenn der Puls eine sehr hohe Feldstärke von mehreren zehntausend Volt pro Zentimeter erzeugt. Und er muss so kurz sein, dass der Kristall sich nicht erwärmt.

Solch extrem starke, ultrakurze Terahertzpulse lassen sich erst seit kurzem erzeugen. Dies ist die Aufgabe von Teammitglied Matthias Hoffmann. Stark vereinfacht gelingt dies, indem man einen ultrakurzen Laserpuls in einen Kristall aus Litiumniobat schießt. Durch einen Effekt, den Physiker optische Gleichrichtung nennen, entsteht dann in dem Kristall die gewünschte Terahertzstrahlung.

Wie erhofft gelang das Experiment, das Andreas Dienst in Oxford designed und ausgeführt hat: Für den kurzen Zeitraum von weniger als einer Pikosekunde (10-12 Sekunden), während dem der Puls den Kristall durchquerte, war die Kopplung zwischen den Ebenen und damit die Supraleitung unterbrochen, anschließend kehrte sie wieder zurück. Der Supraleiter leidet durch diesen Vorgang nicht und lässt sich beliebig oft schalten

„Das ist ein sehr spannendes Ergebnis, weil wir mit dieser Methode auch die Funktionsweise von Hochtemperatur-Supraleitern untersuchen können“, sagt Cavalleri. Darüber hinaus sind auch Anwendungen dieses Effekts denkbar. Im Grunde funktioniert der schaltbare Hochtemperatur-Supraleiter sehr ähnlich wie ein Feldeffekt-Transistor. Das ist ein Halbleiter, dessen Stromdurchlässigkeit sich durch Anlegen einer elektrischen Spannung steuern lässt. Analog wäre es denkbar, den Hochtemperatur-Supraleiter als ultraschnellen, nanoelektronischen Transistor einzusetzen, der mit Mikrowellen gesteuert wird.

Ansprechpartner

Dr. Andreas Dienst
Universität Oxford
Telefon: +44 1865 282875
E-Mail: andreas.dienst@physics.ox.ac.uk
Prof. Andrea Cavalleri
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5356
E-Mail: andrea.cavalleri@mpsd.cfel.de
Ansprechpartner
Dr. Matthias Hoffmann
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5371
E-Mail: matthias.c.hoffmann@mpsd.cfel.de
Originalpublikation
A. Dienst, M. Hoffmann, D. Fausti, J. Petersen, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri
Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor

Nature Photonics, adv. Online public., 26. Juni 2011, DOI: 10.1038/NPHOTON.2011.124

Prof. Andrea Cavalleri | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4356410/ultraschneller_schalter_supraleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik