Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschneller Schalter für Supraleiter

01.07.2011
Terahertzpulse unterbrechen die verlustfreie Stromleitung vorübergehend

Ein Hochtemperatur-Supraleiter lässt sich nun innerhalb einer Billionstel Sekunde an- und abschalten – 100 Jahre nach der Entdeckung der Supraleitung und 25 Jahre nach der ersten Realisierung eines Hochtemperatur-Supraleiters.


Mit einem ultrakurzen Terahertz-Puls (gelb oben) wird der supraleitende Transport zwischen den Schichten eines Kuprat-Kristalls (zwei Schichten, rote und blaue Kugeln stellen die Sauerstoff- bzw. Kupfer-Atome dar) gesteuert. Auf diese Weise lässt sich die dreidimensionale Supraleitung sehr schnell an- und ausschalten (orangene Kugeln stellen Elektronen dar). © J.M. Harms, Max-Planck Forschungsgruppe für Strukturelle Dynamik, Hamburg

Ein Team um Physiker der Universität Oxford und der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg hat den Schalter mit extrem kurzen und starken Terahertzpulsen realisiert. Dieses Experiment eröffnet zum einen die Möglichkeit, mehr über die noch immer nicht geklärte Ursache für diese Art der Supraleitung zu erfahren. Zum anderen deuten sich Anwendungsmöglichkeiten für eine zukünftige ultraschnelle Elektronik an.

Supraleitung ist einer der erstaunlichsten physikalischen Effekte. Jeder elektrische Leiter besitzt einen Widerstand. Doch einige Materialien verlieren ihren Widerstand vollständig, wenn man sie unter eine charakteristische Temperatur abkühlt. Dann fließt der Strom vollkommen verlustfrei. Als der niederländische Physiker Heike Kamerlingh Onnes diesen Effekt 1911 an Quecksilber entdeckte, glaubte er zunächst an einen Fehler seines Messinstruments, bevor ihm die Tragweite seiner Jahrhundertentdeckung bewusst wurde.

Allerdings muss man „normale“ Leiter, wie Quecksilber oder Blei, fast bis an den absoluten Nullpunkt bei minus 273,16 Grad Celsius abkühlen, damit sie supraleitend werden. Es war deshalb eine Sensation, als Johannes Georg Bednorz und Karl Alexander Müller 1986 ein keramisches Material vorstellten, das schon bei minus 248 Grad Celsius supraleitend wurde. Seitdem sind diese kalten Leiter ein heißes Thema bei Grundlagenforschern und Anwendern. Der ultraschnelle Schalter, den die Forschungsgruppe um Andrea Cavalleri, Leiter der Max-Planck-Forschungsgruppe für Strukturelle Dynamik an der Universität Hamburg, nun entwickelt hat, stellt hier eine weitere verblüffende Entdeckung in diesem Gebiet dar.

Der von den Hamburger Wissenschaftlern verwendete Hochtemperatur-Supraleiter ist seit langem bekannt. Es ist ein Kristall, bestehend besteht aus Lanthan-Kuprat (La2CuO4) mit einer fest definierten Beimengung von Strontium (La1,84Sr0,16CuO4). Seine Übergangstemperatur liegt bei minus 233 Grad Celsius. Auf welche Weise die Supraleitung darin zustande kommt, ist zwar noch nicht abschließend geklärt, aber wesentliche Elemente sind bekannt: „Im Innern dieses Kristalls bildet das Kuprat Ebenen, die übereinander liegen, ähnlich wie die Seiten eines Buches“, erklärt Cavalleri. Die Elektronen können sich nur innerhalb dieser Ebenen bewegen; der Stromtransport findet also nur in zwei Dimensionen statt.

Kühlt man das Material unter 40 Kelvin ab, so entsteht plötzlich zwischen diesen Ebenen eine Verbindung. Physiker erklären dies im Wellenbild. Demnach muss man sich die Elektronen nicht als Teilchen, sondern als Wellen vorstellen. Unterhalb der Übergangstemperatur kommt es nun dazu, dass sich die Elektronenwellen aus benachbarten Ebenen überlappen, und das ermöglicht es den elektrischen Ladungsträgern von einer Ebene zur anderen zu wechseln. Damit findet der Stromtransport plötzlich in allen drei Raumdimensionen statt: Der supraleitende Zustand ist entstanden.

Ein Terahertzpuls zerstört kurzzeitig die Kopplung der Elektronen

Cavalleri und seine Mitarbeiter fragten sich nun, ob sich dieser Transport zwischen den Schichten gezielt unterbrechen und wieder anschalten lässt. Theoretisch ist dies möglich, wenn man senkrecht zu den Schichten ein sehr starkes elektrisches Feld anlegt. „Wenn man das tut, erwärmt sich aber der Kristall, und die Supraleitung bricht zusammen“, erklärt Cavalleri. Die Lösung bestand darin, einen ultrakurzen Lichtpuls hineinzuschießen.

Dieser sogenannte Terahertzpuls ist eine elektromagnetische Welle, ähnlich wie Licht, nur mit größerer Wellenlänge. Sie führt ein elektrisches Feld mit sich, das beim Eindringen in den Kristall die Kopplung der Elektronenwellen zischen den Ebenen kurzfristig zerstört. Allerdings gelingt dies nur, wenn der Puls eine sehr hohe Feldstärke von mehreren zehntausend Volt pro Zentimeter erzeugt. Und er muss so kurz sein, dass der Kristall sich nicht erwärmt.

Solch extrem starke, ultrakurze Terahertzpulse lassen sich erst seit kurzem erzeugen. Dies ist die Aufgabe von Teammitglied Matthias Hoffmann. Stark vereinfacht gelingt dies, indem man einen ultrakurzen Laserpuls in einen Kristall aus Litiumniobat schießt. Durch einen Effekt, den Physiker optische Gleichrichtung nennen, entsteht dann in dem Kristall die gewünschte Terahertzstrahlung.

Wie erhofft gelang das Experiment, das Andreas Dienst in Oxford designed und ausgeführt hat: Für den kurzen Zeitraum von weniger als einer Pikosekunde (10-12 Sekunden), während dem der Puls den Kristall durchquerte, war die Kopplung zwischen den Ebenen und damit die Supraleitung unterbrochen, anschließend kehrte sie wieder zurück. Der Supraleiter leidet durch diesen Vorgang nicht und lässt sich beliebig oft schalten

„Das ist ein sehr spannendes Ergebnis, weil wir mit dieser Methode auch die Funktionsweise von Hochtemperatur-Supraleitern untersuchen können“, sagt Cavalleri. Darüber hinaus sind auch Anwendungen dieses Effekts denkbar. Im Grunde funktioniert der schaltbare Hochtemperatur-Supraleiter sehr ähnlich wie ein Feldeffekt-Transistor. Das ist ein Halbleiter, dessen Stromdurchlässigkeit sich durch Anlegen einer elektrischen Spannung steuern lässt. Analog wäre es denkbar, den Hochtemperatur-Supraleiter als ultraschnellen, nanoelektronischen Transistor einzusetzen, der mit Mikrowellen gesteuert wird.

Ansprechpartner

Dr. Andreas Dienst
Universität Oxford
Telefon: +44 1865 282875
E-Mail: andreas.dienst@physics.ox.ac.uk
Prof. Andrea Cavalleri
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5356
E-Mail: andrea.cavalleri@mpsd.cfel.de
Ansprechpartner
Dr. Matthias Hoffmann
Max-Planck-Forschungsgruppe Strukturelle Dynamik
Universität Hamburg
Telefon: +49 40 8998-5371
E-Mail: matthias.c.hoffmann@mpsd.cfel.de
Originalpublikation
A. Dienst, M. Hoffmann, D. Fausti, J. Petersen, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri
Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor

Nature Photonics, adv. Online public., 26. Juni 2011, DOI: 10.1038/NPHOTON.2011.124

Prof. Andrea Cavalleri | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4356410/ultraschneller_schalter_supraleiter

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI mit neuesten VR-Technologien auf der NAB in Las Vegas

24.04.2017 | Messenachrichten

Leichtbau serientauglich machen

24.04.2017 | Maschinenbau

Daten vom Kühlgerät in die Cloud

24.04.2017 | HANNOVER MESSE