Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Röntgentomographie enthüllt Black Box

05.02.2015

Statische Mischer kommen in vielen Bereichen der Prozessindustrie zum Einsatz – beispielsweise bei der Abwasserbehandlung. Direkt in Rohre installiert, werden sie verwendet, um Strömungen, zum Beispiel aus Gas und Flüssigkeit, zu vermischen. Zwar lässt sich die Mischgüte, die mit diesen Bauteilen erreicht wird, messen, die zugrundeliegenden Prozesse konnten bislang aber nicht beschrieben werden. Forschern des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gelang dies nun zum ersten Mal. Sie nutzten dafür die eigens entwickelte ultraschnelle Röntgentomographie. Die Einblicke helfen, das Design statischer Mischer zu verbessern – was zu einer effizienteren Energienutzung führen würde.

Einer der häufigsten Prozesse der chemischen Industrie ist das Verteilen und Lösen von Gas in Flüssigkeiten. Neben klassischen Anlagen wie Rührkessel und Blasensäulen werden dafür verstärkt sogenannte statische Mischer eingesetzt. Bei dieser Methode mixen ausgeklügelte Anordnungen von Mischelementen, wie spiralförmige Flügel oder gekreuzte Stege, direkt in der Rohrleitung verschiedene Stoffe, zum Beispiel Gas und Flüssigkeit. „Wie genau dieser Prozess abläuft, wissen wir bislang nicht“, erklärt Dr. Markus Schubert vom Institut für Fluiddynamik am HZDR. „Wir haben es quasi mit einer Black Box zu tun, bei der wir erst nach der Mischstrecke das Ergebnis erfahren.“ Detaillierte Kenntnisse sind aber notwendig, „da die Kräfte, die dabei wirken, auch dazu führen könnten, dass das Gas und die Flüssigkeit getrennt werden, was fatal wäre“, erläutert der Ingenieur. Optimale Designparameter sind deshalb äußerst wichtig.


Statische Mischer, wie hier grafisch dargestellt, sollen direkt in Rohrsystemen Strömungen vermischen. Forscher des HZDR lieferten zum ersten Mal Einblicke in die Prozesse, die sich dabei abspielen.

HZDR/Michael Voigt

Reine Simulationen mit dem Computer, die oft für solche Probleme eingesetzt werden, sind bisher nicht ausreichend leistungsstark, da die Strömungen zu chaotisch sind. Der Dresdner Forscher hat deswegen gemeinsam mit seinen Kollegen eine neuartige Methode eingesetzt: die ultraschnelle Röntgentomographie. Das Prinzip ist dabei das gleiche wie bei der medizinischen Anwendung. Der „Patient“ ist in diesem Fall jedoch kein Mensch, sondern die Strömung aus Gas und Flüssigkeit. „Diese ist jedoch sehr dynamisch. Daher müssen wir eine schnellere Methode nutzen“, beschreibt Schubert die Herausforderung.

1.000 Bilder in nur einer Sekunde
Ein schnell ablenkbarer Elektronenstrahl wird dafür auf ein Target aus Wolfram gerichtet. Dadurch entsteht eine bewegliche Röntgenquelle, so dass die Strömung aus allen Richtungen durchstrahlt werden kann. Diese Strahlung wird von der Flüssigkeit stärker und vom Gas weniger geschwächt. Aus vielen einzelnen Röntgenprojektionen lassen sich anschließend Schnittbilder rekonstruieren, mit denen Schubert die Strömung analysieren kann. 1.000 Bilder in nur einer Sekunde sind so kein Problem. Selbst einzelne, in der Flüssigkeit verteilte Gasblasen und deren Weg durch die Mischsegmente werden auf diese Weise leicht sichtbar.

Vor allem die Blasengrößenverteilung interessiert Markus Schubert: „Der Stofftransport erfolgt über die Oberflächen dieser Gasblasen. Kleine, feinverteilte Gasblasen intensivieren ihn, was gewünscht ist. Dabei soll möglichst wenig Energie, also in diesem Fall Pumpleistung, verbraucht werden. Im untersuchten Mischer mit spiralförmig angeordneten Flügeln konkurrieren allerdings verschiedene physikalische Prozesse miteinander. Einerseits zerteilen die Turbulenzen die Blasen. Andererseits verschmelzen sie teilweise auch wieder, da die Zentrifugalkräfte die leichtere Gasphase von dem schwereren Stoff, also der Flüssigkeit, trennen.“

Um zu testen, welche Auswirkung die Mischerelemente auf die Strömung und die Blasenbildung haben, variierten die Dresdner Wissenschaftler systematisch die Länge der Mischstrecke und die Stoffmengenströme. Für die untersuchten Bedingungen bestimmten sie den Leistungseintrag und die Verteilung unterschiedlicher Blasengrößen. „Wir konnten zeigen, dass bei spiralförmigen Elementen das Ziel des Mischprozesses, also möglichst viele kleine Blasen, durch die erwähnte Separation der beiden Stoffe seine Grenzen hat. Daraus können wir Rückschlüsse für die optimale Anordnung der Einbauten und die Länge der Strecke ziehen.“

Insgesamt konnten die Rossendorfer Wissenschaftler mit ihrer kürzlich veröffentlichten Studie (Chemical Engineering Journal / DOI:10.1016/j.cej.2014.09.019) wichtige Parameter für den optimalen Betrieb statischer Mischer ermitteln. Um die Wechselwirkungen zwischen Design und Strömung noch genauer zu erkunden, wollen sie nun weitere Mischerstrukturen analysieren – Untersuchungen, die die Industrie im Gegensatz zu Forschungszentren nicht leisten kann, wie Schubert betont: „Für Unternehmen kommt es natürlich darauf an, welcher Mischertyp ein gutes Endergebnis – also einen guten Stofftransport – bringt. Deshalb greifen sie auf bewährte Designanordnungen zurück. Das heißt aber nicht, dass das auch die besten sind.“ An dieser Stelle setzen Forscher, wie Markus Schubert, an.

Publikation:
S. Rabha, M. Schubert, F. Grugel, M. Banowski, U. Hampel, „Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas-liquid flow”, in: Chemical Engineering Journal, 262 (2015) 527-540, DOI:10.1016/j.cej.2014.09.019.

Weitere Informationen:
Dr. Markus Schubert
Institut für Fluiddynamik am HZDR
Tel. +49 351 260-2627 | E-Mail: m.schubert@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie.
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/db/Cms?pNid=99&pOid=43755

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie