Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnell und sehr genau

01.09.2016

Treffen extrem kurze Lichtpulse auf Materie, zeigt sich ein überraschender Quanteneffekt. Das haben Theoretische Physiker um Oriol Romero-Isart vom Institut für Quantenoptik und Quanteninformation (IQOQI) und der Universität Innsbruck entdeckt. Dieser Effekt könnte möglicherweise dazu genutzt werden, eine völlig neue Art von hochauflösenden Lichtmikroskopen zu bauen.

Die Erfindung des Lichtmikroskops stand am Anfang der modernen Naturwissenschaften. Viele fundamentale Fragen konnten mit seiner Hilfe geklärt werden. Noch heute haben Mikroskope in der Forschung eine enorme Bedeutung und gehören zur Grundausstattung vieler Labors.


Attosekunden-Pulse von vielfarbigem Licht können ein Zwei-Niveau-System anregen.

Patrick Maurer

Für besonders hochauflösende Lichtmikroskope prägte der Chemie-Nobelpreisträger Stefan Hell den Begriff Nanoskope, weil diese auch Objekte im Nanometer-Bereich sichtbar machen können.

Nun haben Oriol Romero-Isart und Doktorand Patrick Maurer gemeinsam mit Ignacio Cirac vom Max-Planck-Institut für Quantenoptik in Garching bei München eine Entdeckung gemacht, die möglicherweise die Entwicklung einer völlig neuen Art von Nanoskopen erlaubt.

Die Auflösung von Lichtmikroskopen ist durch die Wellenlänge des Lichts beschränkt. Mit technischen Tricks lassen sich allerdings noch höhere Auflösungen erzielen. Die Innsbrucker Physiker demonstrieren nun in einer theoretischen Arbeit in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters, wie Attosekunden-Pulse von vielfarbigem Licht ein Zwei-Niveau-System - ein einfaches Modellsystem der Quantenmechanik - anregen können.

Nach kurzer Zeit geht das System wieder in den Grundzustand über und emittiert dabei ein Lichtteilchen, das sich messen lässt. „Da Attosekunden-Laser sehr gut fokussiert werden können, eröffnet dieser Ansatz möglicherweise den Weg zu einer neuen Technologie für Nanoskope“, freut sich Oriol Romero-Isart, dessen Arbeitsgruppe unter anderem auf dem Gebiet der Nanooptik forscht.

„Das Spektrum der Lichtpulse kann von Radiofrequenzen bis zu ultraviolettem Licht reichen“, erläutert Patrick Maurer. „Die Auflösung wird dabei durch die mittlere Wellenlänge des Lichts bestimmt.“ Die Dauer der Lichtpulse muss extrem kurz sein, im Attosekunden-Bereich.

Eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde. Nun wollen die Wissenschaftler diesen Ansatz mit realen Molekülen durchrechnen und so den Weg zu den neuartigen Nanoskopen weiter ebnen.

Publikation: Ultrashort Pulses for Far-Field Nanoscopy. Patrick Maurer, J. Ignacio Cirac, and Oriol Romero-Isart. Phys. Rev. Lett. 117, 103602 – Published 29 August 2016
doi: 10.1103/PhysRevLett.117.103602

Rückfragehinweis:
Oriol Romero-Isart
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Telefon: +43 512 507 4730
E-Mail: oriol.romero-isart@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1103/PhysRevLett.117.103602 - Ultrashort Pulses for Far-Field Nanoscopy. Patrick Maurer, J. Ignacio Cirac, and Oriol Romero-Isart. Phys. Rev. Lett. 117, 103602
http://iqoqi.at/en/group-page-romero-isart - Quantum Nanophysics, Optics and Information, IQOQI

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops