Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzzeitspektroskopie deckt Einzelschritte von Phasenübergängen auf

04.10.2016

Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen deckt bisher unbekannten mikroskopischen Mechanismus beim Isolator-Metall-Phasenübergang auf. Durch einen selbstverstärkenden Schmelzprozess - induziert durch photoangeregte Elektronen - wird der isolierende Zustand innerhalb weniger Femtosekunden aufgehoben. Die Arbeit wurde nun in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.

Phasenübergänge sind Änderungen der Eigenschaften von Materialien, die zum Beispiel bei Temperatur- und Druckänderungen auftreten. Der am besten bekannte Phasenübergang ist der von flüssigem Wasser zu Wasserdampf. Phasenübergänge liegen aber auch in anderen Materialien vor, zum Beispiel wenn sie von einem supraleitenden zu einem normal leitenden Zustand oder von einem Isolator zu einem elektrischen Leiter übergehen. Bei allen diesen Phasenübergängen liegen der Änderung der makroskopischen Eigenschaften diverse mikroskopische Prozesse zugrunde. Bei der Supraleitung ist dies die Bildung von neuen Zuständen aus zwei Elektronen und beim Übergang vom Isolator zum metallischen Leiter ist dies die starke Zunahme der freien Ladungsträger, die bei einer Erwärmung eintritt. Bis vor wenigen Jahren konnte man Phasenübergänge nicht „genügend schnell“ detektieren, um den Zeitablauf dieser mikroskopischen Prozesse zu erkennen. In neuesten Untersuchungen konnten diese Einschränkungen mit Hilfe geeigneter optischer Pulse und mit Röntgenlichtpulsen durchbrochen werden.


Photoemissionsspektren des Titan-Diselenid-Systems

Quelle: Stefan Mathias, Georg-August-Universität Göttingen

Ein internationales Physikerteam aus Kaiserslautern, Göttingen, Kiel sowie Boulder (Colorado, USA) hat sich nun einen Phasenübergang mit sehr hoher Zeitauflösung untersucht. Von dem verwendeten Material, Titan-Diselenid (TiSe2), war bekannt, dass es einen Isolator-Metall-Phasenübergang bei einer Temperatur von circa 200 Kelvin aufweist. Das Team berichtet nun in der renommierten Fachzeitschrift Nature Communications darüber, wie es mit Echtzeitspektroskopie nach einer ultrakurzen optischen Anregung einen Phasenübergang charakterisieren konnte. Mit zeitaufgelöster Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen konnte die Besetzung von elektronischen Energiezuständen auf Zeitskalen von Femtosekunden (10-15 s) verfolgt werden. Das Material wurde bei Temperaturen, bei denen es als Isolator wirkt, durch einen ultrakurzen Laserpuls sehr schnell auf Temperaturen jenseits des Phasenübergangs aufgeheizt. Die Photoemissionsspektroskopie zeigte dann in Echtzeit, wie der Energieabstand zwischen besetzten und unbesetzten elektronischen Zuständen durch die ultraschnelle Dynamik der angeregten Elektronen zusehends geschlossen wird.

Zentrales Forschungsergebnis ist, dass eine optische Anregung des Materials einen sich selbst verstärkenden Schmelzprozess induziert, der den Übergang von isolierenden in metallischen Zustand erheblich beschleunigt. Nach Anregung von Elektronen über die elektronische Bandlücke hinweg kommt es durch Energieverlust-Prozesse dieser Elektronen zu einer weiteren, sehr starken Ladungsträgermultiplikation. Die Forscher konnten nachweisen, dass diese zusätzlichen Ladungsträger die Energiebandlücke weiter verkleinern, was wiederum den Multiplikationsprozess verstärkt. Mit Hilfe eines theoretisches Modells, das wesentliche Aspekte der elektronischen Dynamik abbildet, konnte dieser selbstverstärkende Effekt als zugrundeliegende Ursache des ultraschnellen Phasenübergangs identifiziert werden.

Die hier erzielten Ergebnisse sind auch unter zwei weiteren Aspekten interessant. Zum einen ist Titan-Diselenid ein komplexes Material, das sich einer Beschreibung als reines Metall oder reiner Isolator/Halbleiter entzieht. Komplexe Materialien haben in den letzten Jahrzehnten sehr stark an Bedeutung gewonnen und werden deshalb auch in der Grundlagenforschung intensiv untersucht. Titan-Diselenid ist deshalb komplex, weil elektronische und Gitterfreiheitsgrade in einer komplizierten Weise gekoppelt sind. Bei tiefen Temperaturen liegt dieses Material in einem sogenannten Ladungsdichtewellen-Zustand vor, bei dem die Kristallstruktur und die elektronische Struktur im Vergleich zu Temperaturen jenseits des Phasenübergangs verändert sind. Zum anderen betritt die Untersuchung von Phasenübergängen auf der hier untersuchten Zeitskala Neuland, weil durch die Anregungsbedingungen Phasen realisiert werden können, die im thermischen Gleichgewicht nicht vorkommen.

Der gefundene Mechanismus wird als universell für eine große Anzahl von Phasenübergangs-Materialien angesehen. Die Forschungsergebnisse eröffnen somit die Perspektive, Einzelschritte des Phasenübergangs gezielt zu kontrollieren und zu manipulieren.

Zentrale Teile der Forschung wurden im Rahmen zweier Sonderforschungsbereiche der Deutschen Forschungsgemeinschaft durchgeführt: SFB 1073 (Kontrolle von Energiewandlung auf atomaren Skalen) und SFB/TRR 173 (Spin+X) sowie dem Landesforschungszentrum OPTIMAS der TU Kaiserslautern. Die beteiligten Teams stammen von der Technischen Universität Kaiserslautern, der Georg-August-Universität Göttingen, der Christian-Albrechts-Universität Kiel sowie der University of Colorado und dem National Institute of Standards in Boulder (Colorado, USA).

Zur Abbildungsreihe: Photoemissionsspektren des Titan-Diselenid-Systems mit hoher Zeitauflösung (Femtosekunden, 10-15 s) ermöglichen, es die Ladungsträgerdynamik während eines optisch angeregten Phasenübergangs mikroskopisch zu untersuchen. In Echtzeit kann man eine ultraschnelle Ladungsträgermultiplikation beobachten und erkennen, wie durch einen selbstverstärkenden Effekt der isolierende Zustand aufgehoben wird. (Quelle: Stefan Mathias, Georg-August-Universität Göttingen)

Ansprechpartner:
Prof. Dr. Stefan Mathias (Georg-August-Universität Göttingen):
Ultrafast Phenomena, http://www.mathias.physik.uni-goettingen.de
Tel. 0551/ 39 7607; smathias@uni-goettingen.de

Prof. Dr. Martin Aeschlimann (Technische Universität Kaiserslautern):
Ultrafast Phenomena At Surfaces, http://www.physik.uni-kl.de/aeschlimann/home/
Tel. 0631 / 205 2273; ma@physik.un-kl.de

Weitere Informationen:
S. Mathias, S. Eich, J. Urbancic, S. Michael, A.V. Carr, S. Emmerich, A. Stange, T. Popmintchev, T. Rohwer, M.Wiesenmayer, A. Ruffing, S. Jakobs, S. Hellmann, P. Matyba, C. Chen, L. Kipp, M. Bauer, H.C. Kapteyn, H.C. Schneider, K. Rossnagel, M.M. Murnane & M. Aeschlimann:
Self-amplified photo-induced gap quenching in a correlated electron material
Nature Communications 2016, AOP; Doi: 10.1038/ncomms12902


Katrin Müller | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE