Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzzeitspektroskopie deckt Einzelschritte von Phasenübergängen auf

04.10.2016

Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen deckt bisher unbekannten mikroskopischen Mechanismus beim Isolator-Metall-Phasenübergang auf. Durch einen selbstverstärkenden Schmelzprozess - induziert durch photoangeregte Elektronen - wird der isolierende Zustand innerhalb weniger Femtosekunden aufgehoben. Die Arbeit wurde nun in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.

Phasenübergänge sind Änderungen der Eigenschaften von Materialien, die zum Beispiel bei Temperatur- und Druckänderungen auftreten. Der am besten bekannte Phasenübergang ist der von flüssigem Wasser zu Wasserdampf. Phasenübergänge liegen aber auch in anderen Materialien vor, zum Beispiel wenn sie von einem supraleitenden zu einem normal leitenden Zustand oder von einem Isolator zu einem elektrischen Leiter übergehen. Bei allen diesen Phasenübergängen liegen der Änderung der makroskopischen Eigenschaften diverse mikroskopische Prozesse zugrunde. Bei der Supraleitung ist dies die Bildung von neuen Zuständen aus zwei Elektronen und beim Übergang vom Isolator zum metallischen Leiter ist dies die starke Zunahme der freien Ladungsträger, die bei einer Erwärmung eintritt. Bis vor wenigen Jahren konnte man Phasenübergänge nicht „genügend schnell“ detektieren, um den Zeitablauf dieser mikroskopischen Prozesse zu erkennen. In neuesten Untersuchungen konnten diese Einschränkungen mit Hilfe geeigneter optischer Pulse und mit Röntgenlichtpulsen durchbrochen werden.


Photoemissionsspektren des Titan-Diselenid-Systems

Quelle: Stefan Mathias, Georg-August-Universität Göttingen

Ein internationales Physikerteam aus Kaiserslautern, Göttingen, Kiel sowie Boulder (Colorado, USA) hat sich nun einen Phasenübergang mit sehr hoher Zeitauflösung untersucht. Von dem verwendeten Material, Titan-Diselenid (TiSe2), war bekannt, dass es einen Isolator-Metall-Phasenübergang bei einer Temperatur von circa 200 Kelvin aufweist. Das Team berichtet nun in der renommierten Fachzeitschrift Nature Communications darüber, wie es mit Echtzeitspektroskopie nach einer ultrakurzen optischen Anregung einen Phasenübergang charakterisieren konnte. Mit zeitaufgelöster Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen konnte die Besetzung von elektronischen Energiezuständen auf Zeitskalen von Femtosekunden (10-15 s) verfolgt werden. Das Material wurde bei Temperaturen, bei denen es als Isolator wirkt, durch einen ultrakurzen Laserpuls sehr schnell auf Temperaturen jenseits des Phasenübergangs aufgeheizt. Die Photoemissionsspektroskopie zeigte dann in Echtzeit, wie der Energieabstand zwischen besetzten und unbesetzten elektronischen Zuständen durch die ultraschnelle Dynamik der angeregten Elektronen zusehends geschlossen wird.

Zentrales Forschungsergebnis ist, dass eine optische Anregung des Materials einen sich selbst verstärkenden Schmelzprozess induziert, der den Übergang von isolierenden in metallischen Zustand erheblich beschleunigt. Nach Anregung von Elektronen über die elektronische Bandlücke hinweg kommt es durch Energieverlust-Prozesse dieser Elektronen zu einer weiteren, sehr starken Ladungsträgermultiplikation. Die Forscher konnten nachweisen, dass diese zusätzlichen Ladungsträger die Energiebandlücke weiter verkleinern, was wiederum den Multiplikationsprozess verstärkt. Mit Hilfe eines theoretisches Modells, das wesentliche Aspekte der elektronischen Dynamik abbildet, konnte dieser selbstverstärkende Effekt als zugrundeliegende Ursache des ultraschnellen Phasenübergangs identifiziert werden.

Die hier erzielten Ergebnisse sind auch unter zwei weiteren Aspekten interessant. Zum einen ist Titan-Diselenid ein komplexes Material, das sich einer Beschreibung als reines Metall oder reiner Isolator/Halbleiter entzieht. Komplexe Materialien haben in den letzten Jahrzehnten sehr stark an Bedeutung gewonnen und werden deshalb auch in der Grundlagenforschung intensiv untersucht. Titan-Diselenid ist deshalb komplex, weil elektronische und Gitterfreiheitsgrade in einer komplizierten Weise gekoppelt sind. Bei tiefen Temperaturen liegt dieses Material in einem sogenannten Ladungsdichtewellen-Zustand vor, bei dem die Kristallstruktur und die elektronische Struktur im Vergleich zu Temperaturen jenseits des Phasenübergangs verändert sind. Zum anderen betritt die Untersuchung von Phasenübergängen auf der hier untersuchten Zeitskala Neuland, weil durch die Anregungsbedingungen Phasen realisiert werden können, die im thermischen Gleichgewicht nicht vorkommen.

Der gefundene Mechanismus wird als universell für eine große Anzahl von Phasenübergangs-Materialien angesehen. Die Forschungsergebnisse eröffnen somit die Perspektive, Einzelschritte des Phasenübergangs gezielt zu kontrollieren und zu manipulieren.

Zentrale Teile der Forschung wurden im Rahmen zweier Sonderforschungsbereiche der Deutschen Forschungsgemeinschaft durchgeführt: SFB 1073 (Kontrolle von Energiewandlung auf atomaren Skalen) und SFB/TRR 173 (Spin+X) sowie dem Landesforschungszentrum OPTIMAS der TU Kaiserslautern. Die beteiligten Teams stammen von der Technischen Universität Kaiserslautern, der Georg-August-Universität Göttingen, der Christian-Albrechts-Universität Kiel sowie der University of Colorado und dem National Institute of Standards in Boulder (Colorado, USA).

Zur Abbildungsreihe: Photoemissionsspektren des Titan-Diselenid-Systems mit hoher Zeitauflösung (Femtosekunden, 10-15 s) ermöglichen, es die Ladungsträgerdynamik während eines optisch angeregten Phasenübergangs mikroskopisch zu untersuchen. In Echtzeit kann man eine ultraschnelle Ladungsträgermultiplikation beobachten und erkennen, wie durch einen selbstverstärkenden Effekt der isolierende Zustand aufgehoben wird. (Quelle: Stefan Mathias, Georg-August-Universität Göttingen)

Ansprechpartner:
Prof. Dr. Stefan Mathias (Georg-August-Universität Göttingen):
Ultrafast Phenomena, http://www.mathias.physik.uni-goettingen.de
Tel. 0551/ 39 7607; smathias@uni-goettingen.de

Prof. Dr. Martin Aeschlimann (Technische Universität Kaiserslautern):
Ultrafast Phenomena At Surfaces, http://www.physik.uni-kl.de/aeschlimann/home/
Tel. 0631 / 205 2273; ma@physik.un-kl.de

Weitere Informationen:
S. Mathias, S. Eich, J. Urbancic, S. Michael, A.V. Carr, S. Emmerich, A. Stange, T. Popmintchev, T. Rohwer, M.Wiesenmayer, A. Ruffing, S. Jakobs, S. Hellmann, P. Matyba, C. Chen, L. Kipp, M. Bauer, H.C. Kapteyn, H.C. Schneider, K. Rossnagel, M.M. Murnane & M. Aeschlimann:
Self-amplified photo-induced gap quenching in a correlated electron material
Nature Communications 2016, AOP; Doi: 10.1038/ncomms12902


Katrin Müller | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics