Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzzeitspektroskopie deckt Einzelschritte von Phasenübergängen auf

04.10.2016

Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen deckt bisher unbekannten mikroskopischen Mechanismus beim Isolator-Metall-Phasenübergang auf. Durch einen selbstverstärkenden Schmelzprozess - induziert durch photoangeregte Elektronen - wird der isolierende Zustand innerhalb weniger Femtosekunden aufgehoben. Die Arbeit wurde nun in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.

Phasenübergänge sind Änderungen der Eigenschaften von Materialien, die zum Beispiel bei Temperatur- und Druckänderungen auftreten. Der am besten bekannte Phasenübergang ist der von flüssigem Wasser zu Wasserdampf. Phasenübergänge liegen aber auch in anderen Materialien vor, zum Beispiel wenn sie von einem supraleitenden zu einem normal leitenden Zustand oder von einem Isolator zu einem elektrischen Leiter übergehen. Bei allen diesen Phasenübergängen liegen der Änderung der makroskopischen Eigenschaften diverse mikroskopische Prozesse zugrunde. Bei der Supraleitung ist dies die Bildung von neuen Zuständen aus zwei Elektronen und beim Übergang vom Isolator zum metallischen Leiter ist dies die starke Zunahme der freien Ladungsträger, die bei einer Erwärmung eintritt. Bis vor wenigen Jahren konnte man Phasenübergänge nicht „genügend schnell“ detektieren, um den Zeitablauf dieser mikroskopischen Prozesse zu erkennen. In neuesten Untersuchungen konnten diese Einschränkungen mit Hilfe geeigneter optischer Pulse und mit Röntgenlichtpulsen durchbrochen werden.


Photoemissionsspektren des Titan-Diselenid-Systems

Quelle: Stefan Mathias, Georg-August-Universität Göttingen

Ein internationales Physikerteam aus Kaiserslautern, Göttingen, Kiel sowie Boulder (Colorado, USA) hat sich nun einen Phasenübergang mit sehr hoher Zeitauflösung untersucht. Von dem verwendeten Material, Titan-Diselenid (TiSe2), war bekannt, dass es einen Isolator-Metall-Phasenübergang bei einer Temperatur von circa 200 Kelvin aufweist. Das Team berichtet nun in der renommierten Fachzeitschrift Nature Communications darüber, wie es mit Echtzeitspektroskopie nach einer ultrakurzen optischen Anregung einen Phasenübergang charakterisieren konnte. Mit zeitaufgelöster Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen konnte die Besetzung von elektronischen Energiezuständen auf Zeitskalen von Femtosekunden (10-15 s) verfolgt werden. Das Material wurde bei Temperaturen, bei denen es als Isolator wirkt, durch einen ultrakurzen Laserpuls sehr schnell auf Temperaturen jenseits des Phasenübergangs aufgeheizt. Die Photoemissionsspektroskopie zeigte dann in Echtzeit, wie der Energieabstand zwischen besetzten und unbesetzten elektronischen Zuständen durch die ultraschnelle Dynamik der angeregten Elektronen zusehends geschlossen wird.

Zentrales Forschungsergebnis ist, dass eine optische Anregung des Materials einen sich selbst verstärkenden Schmelzprozess induziert, der den Übergang von isolierenden in metallischen Zustand erheblich beschleunigt. Nach Anregung von Elektronen über die elektronische Bandlücke hinweg kommt es durch Energieverlust-Prozesse dieser Elektronen zu einer weiteren, sehr starken Ladungsträgermultiplikation. Die Forscher konnten nachweisen, dass diese zusätzlichen Ladungsträger die Energiebandlücke weiter verkleinern, was wiederum den Multiplikationsprozess verstärkt. Mit Hilfe eines theoretisches Modells, das wesentliche Aspekte der elektronischen Dynamik abbildet, konnte dieser selbstverstärkende Effekt als zugrundeliegende Ursache des ultraschnellen Phasenübergangs identifiziert werden.

Die hier erzielten Ergebnisse sind auch unter zwei weiteren Aspekten interessant. Zum einen ist Titan-Diselenid ein komplexes Material, das sich einer Beschreibung als reines Metall oder reiner Isolator/Halbleiter entzieht. Komplexe Materialien haben in den letzten Jahrzehnten sehr stark an Bedeutung gewonnen und werden deshalb auch in der Grundlagenforschung intensiv untersucht. Titan-Diselenid ist deshalb komplex, weil elektronische und Gitterfreiheitsgrade in einer komplizierten Weise gekoppelt sind. Bei tiefen Temperaturen liegt dieses Material in einem sogenannten Ladungsdichtewellen-Zustand vor, bei dem die Kristallstruktur und die elektronische Struktur im Vergleich zu Temperaturen jenseits des Phasenübergangs verändert sind. Zum anderen betritt die Untersuchung von Phasenübergängen auf der hier untersuchten Zeitskala Neuland, weil durch die Anregungsbedingungen Phasen realisiert werden können, die im thermischen Gleichgewicht nicht vorkommen.

Der gefundene Mechanismus wird als universell für eine große Anzahl von Phasenübergangs-Materialien angesehen. Die Forschungsergebnisse eröffnen somit die Perspektive, Einzelschritte des Phasenübergangs gezielt zu kontrollieren und zu manipulieren.

Zentrale Teile der Forschung wurden im Rahmen zweier Sonderforschungsbereiche der Deutschen Forschungsgemeinschaft durchgeführt: SFB 1073 (Kontrolle von Energiewandlung auf atomaren Skalen) und SFB/TRR 173 (Spin+X) sowie dem Landesforschungszentrum OPTIMAS der TU Kaiserslautern. Die beteiligten Teams stammen von der Technischen Universität Kaiserslautern, der Georg-August-Universität Göttingen, der Christian-Albrechts-Universität Kiel sowie der University of Colorado und dem National Institute of Standards in Boulder (Colorado, USA).

Zur Abbildungsreihe: Photoemissionsspektren des Titan-Diselenid-Systems mit hoher Zeitauflösung (Femtosekunden, 10-15 s) ermöglichen, es die Ladungsträgerdynamik während eines optisch angeregten Phasenübergangs mikroskopisch zu untersuchen. In Echtzeit kann man eine ultraschnelle Ladungsträgermultiplikation beobachten und erkennen, wie durch einen selbstverstärkenden Effekt der isolierende Zustand aufgehoben wird. (Quelle: Stefan Mathias, Georg-August-Universität Göttingen)

Ansprechpartner:
Prof. Dr. Stefan Mathias (Georg-August-Universität Göttingen):
Ultrafast Phenomena, http://www.mathias.physik.uni-goettingen.de
Tel. 0551/ 39 7607; smathias@uni-goettingen.de

Prof. Dr. Martin Aeschlimann (Technische Universität Kaiserslautern):
Ultrafast Phenomena At Surfaces, http://www.physik.uni-kl.de/aeschlimann/home/
Tel. 0631 / 205 2273; ma@physik.un-kl.de

Weitere Informationen:
S. Mathias, S. Eich, J. Urbancic, S. Michael, A.V. Carr, S. Emmerich, A. Stange, T. Popmintchev, T. Rohwer, M.Wiesenmayer, A. Ruffing, S. Jakobs, S. Hellmann, P. Matyba, C. Chen, L. Kipp, M. Bauer, H.C. Kapteyn, H.C. Schneider, K. Rossnagel, M.M. Murnane & M. Aeschlimann:
Self-amplified photo-induced gap quenching in a correlated electron material
Nature Communications 2016, AOP; Doi: 10.1038/ncomms12902


Katrin Müller | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie