Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurze Röntgenblicke in die Nanowelt

25.11.2014

Ultrakurze, hochintensive Röntgenblitze, wie sie an Freie-Elektronen-Lasern erzeugt werden, öffnen das Tor zu einer bisher unbekannten Welt. Mit ihrer Hilfe „fotografieren“ Wissenschaftler den Aufbau kleinster Strukturen, wie etwa die Anordnung von Atomen in Molekülen. Um nicht nur die räumliche sondern auch die zeitliche Auflösung weiter zu verbessern, müsste man die genaue Dauer und Intensität der Röntgenblitze kennen. Dies ist nun einem internationalen Team von Wissenschaftlern gelungen.

Röntgenblitze sind ein einmaliges wissenschaftliches Werkzeug. Um sie zu erzeugen, werden Elektronen zunächst in oft kilometerlangen Vakuumröhren, sogenannten Linearbeschleunigern, auf sehr hohe Energien gebracht und anschließend durch spezielle Magnetanordnungen gelenkt. Dabei senden die Teilchen Röntgenlicht aus, das sich verstärkt, bis ein ultrakurzer und intensiver Röntgenblitz entsteht.


Undulatorhalle der Linac Coherent Light Source des SLAC National Accelerator Laboratory.

Bild: SLAC National Accelerator Laboratory

Mit diesen Röntgenblitzen erkennen Forscher Strukturen von rund einem Zehnmilliardstel eines Meters (0,1 Nanometer). Das ist ungefähr so groß wie der Durchmesser eines Wasserstoffatoms. So lassen sich etwa Biomoleküle in höchster Auflösung abbilden und völlig neue Einblicke in den Nanokosmos der Natur gewinnen.

Mit zwei schnell aufeinander folgenden Blitzen lassen sich sogar Informationen über die strukturellen Veränderungen während einer Reaktion erhalten: Ein erster Laserblitz löst die Reaktion aus, mit einem zweiten Blitz wird vermessen, wie die Struktur sich durch die Reaktion verändert. Dazu müssen die genaue Dauer und der zeitliche Verlauf der Intensität des Röntgenblitzes bekannt sein. Bisher jedoch gab es keine Möglichkeit, ultrakurze Pulse genau zu vermessen.

Forscher der Technischen Universität München (TUM), des Hamburger Center for Free-Electron Laser Science (CFEL) und des Max-Planck-Instituts für Quantenoptik (MPQ) in Garching haben gemeinsam mit weiteren Kollegen nun eine solche Methode entwickelt. Die Experimente dazu fanden am US-Beschleunigerzentrum SLAC National Accelerator Laboratory in Kalifornien (USA) unter der Leitung von Professor Reinhard Kienberger, Dr. Wolfram Helml (TUM) und Dr. Andreas Maier (CFEL) statt.

Die Dauer der Röntgenblitze bestimmten die Wissenschaftler, indem sie ein ursprünglich für die Messung ultrakurzer Lichtblitze entwickeltes Verfahren modifizierten. Die Physiker schickten die Röntgenblitze in eine mit wenigen Edelgasatomen gefüllte Vakuumkammer. Dort überlagerten sie sie mit einem Infrarot-Lichtpuls von 2,4 Mikrometern Wellenlänge.

Treffen nun die Röntgenblitze auf Gasatome, schlagen sie Elektronen aus deren kernnächster Schale heraus und setzen diese frei. Die Elektronen werden dabei vom elektrischen Feld des zweiten Lichtpulses abgebremst oder beschleunigt. Die Geschwindigkeitsänderung hängt davon ab, wann das Licht des überlagerten Pulses die Elektronen erfasst und welche elektrische Feldstärke damit zum Zeitpunkt der Erzeugung gerade vorliegt.

Da während der gesamten Dauer des Röntgenpulses Elektronen frei gesetzt werden, „spüren“ Elektronen die zu unterschiedlichen Zeiten erzeugt werden verschiedene Feldstärken des periodisch schwingenden zusätzlichen Lichtfeldes. Dadurch werden sie unterschiedlich beschleunigt. Aus den unterschiedlichen Ankunftszeiten der Elektronen an einem Detektor berechnen die Physiker, wie lange die ursprünglichen Röntgenblitze gewesen sein müssen.

Mit dieser Methode stellten die Forscher fest, dass die Pulse im Schnitt nicht länger sind als 4,5 Femtosekunden – eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde (10-15 Sekunden). Zudem gewannen die Forscher Erkenntnisse über die Struktur der Röntgenblitze.

Charakteristisch für die hochintensiven Röntgenblitze in Freie-Elektronen-Lasern ist ihre zufällig wechselnde Pulsform. Ein typischer Röntgenpuls besteht dabei aus mehreren zusammenhängenden noch kürzeren „Röntgenspitzen“, deren genaue Anzahl und Intensität von Schuss zu Schuss variieren.

Den Forschern gelang es erstmals, diese ultrakurzen Spitzen direkt zu messen und Vorhersagen zu bestätigen, dass ein solcher Einzel-Röntgenblitz gerade einmal rund 800 Attosekunden dauert – eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde (10-18 Sekunden). Die neue Methode erlaubt eine detaillierte direkte Vermessung der Röntgenblitze und ergänzt damit Methoden, die Pulsform und -länge indirekt aus der Struktur der Elektronenpakete bestimmen, von denen die einzelnen Blitze erzeugt werden.

Die weiterentwickelte Röntgenblitz-Messtechnik könnte auch im neuen Laserforschungszentrum Centre for Advanced Laser Applications (CALA) auf dem Campus Garching zum Einsatz kommen. Hier arbeiten Wissenschaftler unter anderem daran, mithilfe von Hochenergie-Lasern noch kürzere Röntgenpulse zu produzieren. Mit Pulsen von nur wenigen Attosekunden Länge könnte man noch schnellere Prozesse in der Natur „fotografieren“, wie etwa die Bewegung von Elektronen um Atomkerne.

Doch nicht nur in der Grundlagenforschung bieten Röntgenblitze vielversprechende Perspektiven, auch die Medizin könnte davon profitieren. „Ultrakurze, laserartige Röntgenpulse dienen nicht nur der Untersuchung der schnellsten physikalischen Vorgänge im Innersten der Materie, sondern könnten aufgrund ihrer extrem hohen Intensität beispielsweise auch — nach der Röntgendiagnose – zur Zerstörung von Tumoren eingesetzt werden“, erläutert Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der TU München und Leiter des Forschungkonsortiums.

Die Arbeit wurde unterstützt mit Mitteln der deutschen Forschungsgemeinschaft (Exzellenzcluster Munich-Centre for Advanced Photonics, MAP), des Bayerisch-Kalifornischen Hochschulzentrums (BaCaTeC), der International Max Planck Research School on Advanced Photon Science (IMPRS), eines Marie Curie International Outgoing Fellowship (IOF), des US Department of Energy, der National Science Foundation (USA), der Science Foundation Ireland (SFI) und des European Research Council (ERC Starting Grant). Das CFEL ist eine Gemeinschaftseinrichtung des Deutschen Elektronen-Synchrotrons (DESY), der Universität Hamburg und der Max-Planck-Gesellschaft. CALA ist eine gemeinsame Einrichtung der TU München und der Ludwig-Maximilians-Universität München.

Publikation:

W. Helml, A. R. Maier, W. Schweinberger, I. Grguraš, P. Radcliffe, G. Doumy, C. Roedig, J. Gagnon, M. Messerschmidt, S. Schorb, C. Bostedt, F. Grüner, L. F. DiMauro, D. Cubaynes, J. D. Bozek, Th. Tschentscher, J. T. Costello, M. Meyer, R. Coffee, S. Düsterer, A. L. Cavalieri & R. Kienberger
Measuring the temporal structure of few-femtosecond FEL X-ray pulses directly in the time domain
Nature Photonics online, 24. November 2014, Doi: 10.1038/NPHOTON.2014.278

Bildmaterial: http://mediatum.ub.tum.de/?id=1233723

Kontakt:

Prof. Dr. Reinhard Kienberger
Technische Universität München
Lehrstuhl für Laser- und Röntgenphysik, E11
James Frank Str., 85748 Garching, Germany
Tel.: +49 89 289 12840 – E-Mail: reinhard.kienberger@tum.de
Internet: http://www.e11.ph.tum.de 

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics