Ultrakurze Laserpulse: Kasseler Physiker bringen Atome zum Tanzen

Jeder Festkörper besteht aus positiv geladenen Atomkernen und negativ geladenen Elektronen. Die Elektronen sind sehr viel leichter als die Atomkerne und können sich daher im Festkörper viel schneller bewegen und ihre Positionen unverzüglich einnehmen.

Diese Eigenschaft der Elektronen wirkt wie eine Art Kleber, der die Atome zusammenhält. Dieser Kleber ist es auch, der darüber entscheidet, wie sich die Atome in einem Kristall anordnen.

Ein Forschungsteam der Universität Kassel hat nun eine neue Möglichkeit entdeckt, diesen Klebeeffekt zu manipulieren und ihn sich damit für die Materialbearbeitung zunutze zu machen. Dr. Eeuwe Zijlstra, Dr. Alan Kalitsov, Tobias Zier und Prof. Dr. Martin Garcia berechneten dafür das Verhalten der Elektronen unter dem Einfluss ultrakurzer Laserpulse von moderater Intensität.

Wenn ein Laserpuls von der Dauer einer billionstel Sekunde die Elektronen anregt, werden diese heiß und ändern dadurch ihre Klebeeigenschaften. Eine Anregung mit einem sehr intensiven Laserpuls kann dazu führen, dass die Klebefunktion teilweise verschwindet, sodass der Festkörper schmilzt. „Dieser Prozess wird ultraschnelles Schmelzen genannt und unterscheidet sich vollkommen von dem alltäglichen thermischen Schmelzen, ungefähr so wie ein Lottogewinn vom regelmäßigen Sparen“, formuliert es Dr. Zijlstra. Die Zeitskalen und die Effekte seien grundverschieden.

Während der für die Materialbearbeitung wichtige Prozess des ultraschnellen Schmelzens schon bekannt ist, widmeten sich die Kasseler Wissenschaftler der Frage: Wie reagieren die Atome auf Laserpulse, deren Intensität nicht ausreicht, das Material zum Schmelzen zu bringen? Um diese Frage zu beantworten, wählten die Kasseler Wissenschaftler das für die Industrie unverzichtbare Element Silizium und führten mit Hilfe eines in der Arbeitsgruppe Garcia entwickelten Computerprogramms namens CHIVES mehrere Simulationen von einigen hundert Atomen durch. Die Auswertung der Berechnungen ergab, dass die Atome sich synchronisiert im Kollektiv bewegen, ähnlich wie beim Formationstanzen. Die Amplitude der Atombewegung ist periodisch größer bzw. kleiner als im Gleichgewicht. Man nennt diesen Effekt thermal squeezing.

Des Weiteren konnten die Wissenschaftler einen Zusammenhang zwischen dem thermal squeezing bei niedrigen Intensitäten und dem ultraschnellen Schmelzen bei hohen Intensitäten finden: Bestimmte Klebe-Eigenschaften behalten die Elektronen sowohl beim squeezing als auch beim Schmelzen bei. Dadurch wird eine weitere Lücke im Verständnis von Laseranregung mit ultrakurzen Pulsen geschlossen.

Nach Ansicht der Kasseler Physiker wird die neu gewonnene wissenschaftliche Erkenntnis, die durch die Veröffentlichung in der renommierten Zeitschrift Physical Review X
(http://prx.aps.org/abstract/PRX/v3/i1/e011005) der Allgemeinheit frei zur Verfügung steht, sehr nützlich für die Lasermaterialbearbeitung sein. So öffnen diese Ergebnisse neue Möglichkeiten, nichtthermisches Schmelzen zu steuern, etwa um ein Material mit Strukturen zu versehen. Darüber hinaus kann man auf der Basis von zeitaufgelösten Röntgenbeugungsexperimenten mit Hilfe dieser Theorie eindeutig entscheiden, welche Materialien thermisch und welche nicht thermisch schmelzen.

Bild unter http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/lokalpresse/atome.JPG
Bildunterschrift: Die Kasseler Physiker (v.l.) Tobias Zier, Dr. Eeuwe Zijlstra und Prof. Dr Martin Garcia. Foto: Grigoryan/Uni Kassel

Info:
Prof. Dr. Martin Garcia
Universität Kassel
FB 10 – Mathematik und Naturwissenschaften
Institut für Physik
Forschungsgruppe Festkörper und Ultrakurzzeitphysik
Tel.: +49 561 804 4006
E-Mail: garcia@physik.uni-kassel.de

Media Contact

Dr. Guido Rijkhoek idw

Weitere Informationen:

http://www.uni-kassel.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer