Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurze Laserpulse: Kasseler Physiker bringen Atome zum Tanzen

11.02.2013
Kasseler Physiker haben synchronisierte Kollektivbewegungen von Atomen in laserangeregtem Silizium entdeckt. Die Ergebnisse könnten für die Materialbearbeitung mit Lasern von großer Bedeutung sein.

Jeder Festkörper besteht aus positiv geladenen Atomkernen und negativ geladenen Elektronen. Die Elektronen sind sehr viel leichter als die Atomkerne und können sich daher im Festkörper viel schneller bewegen und ihre Positionen unverzüglich einnehmen.

Diese Eigenschaft der Elektronen wirkt wie eine Art Kleber, der die Atome zusammenhält. Dieser Kleber ist es auch, der darüber entscheidet, wie sich die Atome in einem Kristall anordnen.

Ein Forschungsteam der Universität Kassel hat nun eine neue Möglichkeit entdeckt, diesen Klebeeffekt zu manipulieren und ihn sich damit für die Materialbearbeitung zunutze zu machen. Dr. Eeuwe Zijlstra, Dr. Alan Kalitsov, Tobias Zier und Prof. Dr. Martin Garcia berechneten dafür das Verhalten der Elektronen unter dem Einfluss ultrakurzer Laserpulse von moderater Intensität.

Wenn ein Laserpuls von der Dauer einer billionstel Sekunde die Elektronen anregt, werden diese heiß und ändern dadurch ihre Klebeeigenschaften. Eine Anregung mit einem sehr intensiven Laserpuls kann dazu führen, dass die Klebefunktion teilweise verschwindet, sodass der Festkörper schmilzt. „Dieser Prozess wird ultraschnelles Schmelzen genannt und unterscheidet sich vollkommen von dem alltäglichen thermischen Schmelzen, ungefähr so wie ein Lottogewinn vom regelmäßigen Sparen“, formuliert es Dr. Zijlstra. Die Zeitskalen und die Effekte seien grundverschieden.

Während der für die Materialbearbeitung wichtige Prozess des ultraschnellen Schmelzens schon bekannt ist, widmeten sich die Kasseler Wissenschaftler der Frage: Wie reagieren die Atome auf Laserpulse, deren Intensität nicht ausreicht, das Material zum Schmelzen zu bringen? Um diese Frage zu beantworten, wählten die Kasseler Wissenschaftler das für die Industrie unverzichtbare Element Silizium und führten mit Hilfe eines in der Arbeitsgruppe Garcia entwickelten Computerprogramms namens CHIVES mehrere Simulationen von einigen hundert Atomen durch. Die Auswertung der Berechnungen ergab, dass die Atome sich synchronisiert im Kollektiv bewegen, ähnlich wie beim Formationstanzen. Die Amplitude der Atombewegung ist periodisch größer bzw. kleiner als im Gleichgewicht. Man nennt diesen Effekt thermal squeezing.

Des Weiteren konnten die Wissenschaftler einen Zusammenhang zwischen dem thermal squeezing bei niedrigen Intensitäten und dem ultraschnellen Schmelzen bei hohen Intensitäten finden: Bestimmte Klebe-Eigenschaften behalten die Elektronen sowohl beim squeezing als auch beim Schmelzen bei. Dadurch wird eine weitere Lücke im Verständnis von Laseranregung mit ultrakurzen Pulsen geschlossen.

Nach Ansicht der Kasseler Physiker wird die neu gewonnene wissenschaftliche Erkenntnis, die durch die Veröffentlichung in der renommierten Zeitschrift Physical Review X
(http://prx.aps.org/abstract/PRX/v3/i1/e011005) der Allgemeinheit frei zur Verfügung steht, sehr nützlich für die Lasermaterialbearbeitung sein. So öffnen diese Ergebnisse neue Möglichkeiten, nichtthermisches Schmelzen zu steuern, etwa um ein Material mit Strukturen zu versehen. Darüber hinaus kann man auf der Basis von zeitaufgelösten Röntgenbeugungsexperimenten mit Hilfe dieser Theorie eindeutig entscheiden, welche Materialien thermisch und welche nicht thermisch schmelzen.

Bild unter http://www.uni-kassel.de/uni/fileadmin/datas/uni/presse/lokalpresse/atome.JPG
Bildunterschrift: Die Kasseler Physiker (v.l.) Tobias Zier, Dr. Eeuwe Zijlstra und Prof. Dr Martin Garcia. Foto: Grigoryan/Uni Kassel

Info:
Prof. Dr. Martin Garcia
Universität Kassel
FB 10 – Mathematik und Naturwissenschaften
Institut für Physik
Forschungsgruppe Festkörper und Ultrakurzzeitphysik
Tel.: +49 561 804 4006
E-Mail: garcia@physik.uni-kassel.de

Dr. Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie