Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurze Hochleistungs-Laserpulse

13.09.2016

An der TU Wien gelang es, ultrakurze Laserpulse zu komprimieren und ihre Leistung auf ein halbes Terawatt zu erhöhen – das entspricht der Leistung von hunderten Kernreaktoren.

Es ist ein äußerst ungewöhnlicher Laser: Das Forschungsteam am Institut für Photonik an der TU Wien hat ein Gerät entwickelt, das ultrakurze Infrarot-Blitze mit extrem hoher Energie produziert.


Optische Bank am Institut für Photonik (TU Wien)

TU Wien


Andrius Baltuska, Audrius Pugzlys, Valentina Shumakova (v.l.n.r)

TU Wien

„Große Wellenlängen im Infrarotbereich, eine kurze Dauer der Laserpulse und hohe Energie – diese drei Anforderungen gleichzeitig zu erfüllen ist sehr schwer“, sagt Valentina Shumakova. „Aber diese Kombination ist genau was wir für viele interessante Starkfeld-Experimente brauchen.“

Nun gelang dem Team ein entscheidender Durchbruch: Indem energiereiche Pulse im mittleren Infrarotbereich durch ein festes Material gesendet wurden, konnten die Pulse zeitlich und räumlich komprimiert werden.

Die Gesamtenergie bleibt gleich, kann nun aber in deutlich kürzerer Zeit übertragen werden, wodurch sich eine extrem hohe Leistung von bis zu einem halben Terawatt ergibt – das entspricht der Leistung von hunderten Kernreaktoren.

Während diese ihre Leistung allerdings kontinuierlich über lange Zeiträume bringen, dauert der Laserpuls nur etwa 30 Femtosekunden (Millionstel einer Milliardstelsekunde). Die Forschungsergebnisse wurden nun im Fachjournal „Nature Communications“ veröffentlicht.

Unsichtbare Farben

„Unter bestimmten Bedingungen kann sich ein Laserpuls selbst komprimieren und kürzer werden. Das ist ein wohlbekanntes Phänomen in der Lasertechnik“, sagt Audrius Pugzlys. „Aber bisher dachte man, dass diese Selbst-Kompression in festen Materialien bei derart hohen Intensitäten unmöglich ist.“

Im Gegensatz zum Licht eines gewöhnlichen Laserpointers besteht ein ultrakurzer Laserpuls nicht nur aus einer bestimmten Farbe. Er ist eine Mischung aus einem Spektrum unterschiedlicher Wellenlängen – in diesem Fall im Infratot-Bereich um einen Mittelwert von 3.9 Mikrometern, unsichtbar für das menschliche Auge.

Im Vakuum bewegt sich Licht immer gleich schnell fort, unabhängig von der Wellenlänge. Bei Licht, das sich durch ein festes Material bewegt, ist das allerdings nicht der Fall. „Das Material führt dazu, dass sich gewisse Komponenten des Laserpulses schneller bewegen als andere. Wenn dieser Effekt klug genutzt wird, komprimiert sich dadurch der Puls. Er wird kürzer, einfach indem er durch das Material geschickt wird“, sagt Skirmantas Alisauskas.

Diese Technik lässt sich allerdings nicht immer anwenden. „Wenn die Intensität des Lichtpulses sehr hoch ist, dann neigt er dazu, auf chaotische Weise zu kollabieren und sich in einzelne, voneinander getrennte Filamente aufzuspalten“, sagt Audrius Pugzlys. „Das lässt sich mit einem Blitz vergleichen, der sich spontan in mehrere Zweige teilt.“ Jeder dieser Zweige trägt nur einen kleinen Teil der Energie des ursprünglichen Strahls, der daraus resultierende Laserstrahl kann nicht mehr für Startfeld-Laserexperimente genutzt werden.

Filamentations-Grenzwerten um vier Größenordnungen

Das Team der TU Wien hat nun in Zusammenarbeit mit einer Forschungsgruppe der Universität Moskau allerdings herausgefunden, dass es bestimmte Bedingungen gibt, unter denen die Kompression des Laserpulses bei extrem hohen Intensitäten möglich ist, ohne dass der Laserpuls in einzelne Filamente zerfällt. „Wie sich herausstellt, haben wir es mit unterschiedlichen Längenskalen zu tun“, sagt Valentina Shumakova. „Die Längenskala der Filamentation ist größer als die Längen, auf denen es zur Kompression des Laserpulses kommt. Wir können daher einen Parameterbereich finden, in dem der Laserpuls zwar komprimiert wird, aber der störende Filamentations-Effekt noch ausbleibt.“ Die Leistung des Laserpulses ist um einen Faktor 10.000 höher als der Grenzwert, über dem Filamentation einsetzt – und trotzdem kollabiert er nicht.

Das Team verwendete einen Yttrium-Aluminium-Granat-Kristall mit einer Dicke von wenigen Millimetern – und die Resultate sind bemerkenswert: Indem ein Laserpuls durch den Kristall geschickt wird, kann man ihn von 94 Femtosekunden auf 30 Femtosekunden verkürzen. Die Energie bleibt fast gleich, die Leistung erhöht sich um einen Faktor drei, auf beinahe ein halbes Terawatt. „Nachdem der Puls so kurz ist, hat er insgesamt immer noch relativ wenig Energie. Aber diese außerordentlich hohe Leistung öffnet uns die Tür zu ganz neuen spannenden Experimenten und vielleicht auch zu neuen lasertechnologischen Anwendungen“, sagt Audrius Pugzlys.

Originalpublikation: “Multi-millijoule few-cycle Mid-IR pulses through nonlinear self-compression in bulk”, Nature Communications, 13. September 2016.

Fotodownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/magnetit/hochleistungs_laser...

Rückfragehinweis:
Dr. Audrius Pugzlys
Institut für Photonik
Technische Universität Wien
T: +43-1-58801-38720
audrius.pugzlys@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: Energie Infrarotbereich Kristall Laserpuls Licht Material Photonik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie