Mit ultrakalten Atomen zu neuen Supraleitern

Eine Wolke ultrakalter Atome leuchtet in einer Vakuumkammer. UHH/Kai Morgener

Prof. Dr. Henning Moritz vom Institut für Laser-Physik der Universität Hamburg erhält rund 1,2 Millionen Euro vom Europäischen Forschungsrat (European Research Council, ERC). Mit der Exzellenzinitiative „ERC Starting Grant“ werden herausragende junge Wissenschaftlerinnen und Wissenschaftler mit innovativen Vorhaben aus der Grundlagenforschung gefördert.

Mit den Fördermitteln wird Prof. Moritz mit seiner Arbeitsgruppe in den kommenden fünf Jahren an der experimentellen Realisierung von Modellsystemen mit ultrakalten Atomen arbeiten, in denen quantenmechanische Phänomene direkt mit einem hochauflösenden Mikroskop beobachtet werden können.

Quantenmechanik beschreibt das Verhalten von sehr leichten, sich langsam bewegenden Objekten, wie z. B. Atomen. Dabei spielen u. a. die Welleneigenschaften von Materie eine wichtige Rolle. Die Erkenntnisse des Forschungsteams könnten zum besseren Verständnis und langfristig zur Entwicklung von neuen Supraleitern beitragen.

Bei Supraleitern handelt es sich um meist metallische Stoffe, die bei extrem tiefen Temperaturen ihren elektrischen Widerstand verlieren, so dass sie Strom verlustfrei leiten. Sie sind daher technologisch sehr interessant, z. B. für eine effiziente Energieübertragung, und werden unter anderem schon in Kernspin-Tomographen eingesetzt.

Dazu Universitätspräsident Prof. Dr. Dieter Lenzen: „Ich gratuliere Professor Moritz und seinem Team sehr herzlich zu ihrem Erfolg. Es ist eine besondere Auszeichnung, wenn sich ein Forschungskonzept in diesem anspruchsvollen europäischen Wettbewerb durchsetzt. Damit wird einmal mehr die internationale Bedeutung der physikalischen Grundlagenforschung an der Universität Hamburg gewürdigt. Ich wünsche Prof. Moritz viel Erfolg bei seinem Projekt.“

Supraleitung ist bisher nur schwer zu realisieren, da die meisten Materialien aufwändig mit Helium gekühlt werden müssen. Es ist daher wichtig, Materialien zu finden, die auch bei höheren Temperaturen supraleitend sind, und zu verstehen, wie sie funktionieren. Es gibt schon sogenannte Hochtemperatur-Supraleiter, die aus keramischen Materialien bestehen und Strom bereits bei Temperaturen von minus 140°C verlustfrei leiten. Ihre zentralen Mechanismen geben der Wissenschaft jedoch noch große Rätsel auf.

Prof. Moritz und sein Team wollen mit ihrer Forschung zum besseren Verständnis dieser Mechanismen beitragen. Deshalb untersuchen sie die Bewegung und das Verhalten sogenannter fermionischer Atome. Die Wissenschaftler arbeiten mit Gas-Atomen, die sie mit Laserlicht abbremsen und so auf Temperaturen von nur wenigen Milliardstel Grad über dem absoluten Nullpunkt (minus 273° C) herunter kühlen – die wohl kältesten Temperaturen im All. Hier tritt ein Phänomen auf, das verwandt mit der Supraleitung ist: Die Atome bewegen sich völlig reibungsfrei durch Kanäle aus Licht, ebenso wie die Elektronen reibungsfrei durch die supraleitenden Materialien fließen. Für Prof. Moritz und sein Forschungsteam ist dieses Modellsystem aus ultrakalten Atomen so interessant, weil hier die Eigenschaften viel einfacher beeinflusst werden können als in supraleitenden Materialien. So kann zum Beispiel eingestellt werden, ob sich die einzelnen Atome anziehen oder abstoßen. Das Verständnis der grundlegenden Mechanismen der Supraleitung wäre für die Entwicklung verbesserter Supraleiter, die auch bei Raumtemperatur funktionieren, von großer Bedeutung.

Henning Moritz ist seit 2010 Professor an der Universität Hamburg. Er studierte an den Universitäten Heidelberg und Cambridge und forschte als Doktorand und Postdoktorand an der ETH Zürich. Prof. Moritz ist auch an den Forschungsaktivitäten im Sonderforschungsbereich SFB 925 (Lichtinduzierte Dynamik und Kontrolle korrelierter Quantensysteme) und dem Bundesexzellenzcluster „Hamburg Centre for Ultrafast Imaging“ (CUI) beteiligt.

Für Rückfragen:

Prof. Dr. Henning Moritz
Universität Hamburg
Institut für Laser-Physik
Tel.: 040 8998-5265
E-Mail: Henning.Moritz@physik.uni-hamburg.de

Media Contact

Birgit Kruse idw

Weitere Informationen:

http://www.uni-hamburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer