Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakalte Atome jonglieren ihre Spins mit außergewöhnlicher Symmetrie

03.09.2014

LMU/MPQ-Wissenschaftler weisen einen hochsymmetrischen Spin-Austausch zwischen Atomen in unterschiedlichen Orbitalen nach

Das physikalische Verhalten von Stoffen ist zum größten Teil bestimmt durch die Wechsel-wirkungen und die Bewegungen der Elektronen innerhalb des Materials. Während es sich bei einem einzelnen Elektron um ein relativ einfaches Objekt handelt, das lediglich durch seine Masse, seine elektrische Ladung und seinen Eigendrehimpuls, den sogenannten Spin, charakterisiert ist, kann das kollektive Verhalten eines Systems aus vielen interagierenden Elektronen außerordentlich komplex sein.


Abb. 1 Schematische Darstellung einer Spin-Austausch-Kollision. Zwei Atome in verschiedenen Orbitalen (grün und blau) und mit verschiedenen Spin-Orientierungen (schwarze Pfeile) stoßen zusammen. Entscheidend ist, dass nach dem Zusammenstoß beide Spinvektoren unverändert sind, aber zwischen den Atomen ohne Änderung der Orientierungen ausgetauscht werden. (Grafik: LMU-München / MPQ, Abt. Quanten-Vielteilchensysteme).


Abb. 2: Die sechs verschiedenen Spin-Zustände der SU(N=6) Symmetriegruppe können voneinander getrennt und dann abgebildet werden. Die Analyse der Daten verschiedener Populationen zeigt, dass die Dynamik des Prozesses unabhängig von der Wahl der anfänglichen Spin-Kombination ist. (Grafik: LMU-München / MPQ, Abt. Quanten-Vielteilchensysteme).

Dies korrekt zu beschreiben ist meist der Schlüssel zum Verständnis der Materialeigenschaften. Materie mit komplexem kollektivem Verhalten, insbesondere solche, bei denen die Wechselwirkung der Elektronen auch deren Spins involviert, stellen dabei eine besondere theoretische und experimentelle Herausforderung dar. Seit einigen Jahren versucht man daher, das Verhalten von Ensembles von Elektronen in besonders gut kontrollierten Bedingungen nachzubilden, indem man ultrakalte Gase in künstlichen Gittern aus Licht als Modelle für kristalline Festkörper präpariert.

Ein Team von Simon Fölling und Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am Max-Planck-Institut für Quantenoptik) hat nun gezeigt, dass bestimmte Atome auch durch Austausch ihrer Spins wechselwirken können, auch wenn sie sich in verschiedenen „elektronischen Orbitalen“ befinden. Dieser Prozess war bisher nur bei Elektronen bekannt (Nature Physics, Advance Online Publication, 31. August 2014).

Dazu präparierten die Wissenschaftler die Atome zunächst in verschiedenen Spin-Zuständen, um sie danach paarweise in Wechselwirkung zu bringen. Das Ergebnis wurde analysiert, und die damit verbundene Energiemenge bestimmt. Dabei konnten die Forscher nachweisen, dass der Spin-Austausch-Prozess bei Ytterbium-Atomen in einer besonders symmetrischen Weise stattfinden kann, welche bislang nur theoretisch vorher gesagt worden war und in der Natur nicht beobachtet werden konnte. Der experimentelle Nachweis ebnet den Weg, bislang unzugängliche Quantenphänomene experimentell zu untersuchen.

Elektronen in Festkörpern können generell in zwei Gruppen eingeteilt werden: in bewegliche und unbewegliche. Elektrische Leiter verfügen naturgemäß über viele bewegliche Elektronen, während einfache Isolatoren normalerweise nur unbewegliche besitzen. Doch die Angelegenheit wird weit interessanter, wenn die Elektronen zwischen beiden Klassen wechseln können, wie dies zum Beispiel bei Halbleitern der Fall ist, oder wenn unbewegliche mit beweglichen Elektronen in Wechselwirkung treten können, was in vielen magnetischen Stoffen vorkommt. Ob sich ein Elektron bewegen kann oder nicht, ist durch seine sogenannte Wellenfunktion vorgegeben, die man auch als Orbital bezeichnet. Ein Elektron kann normalerweise durch Angabe von Spin, Orbital und Position vollständig beschrieben werden. Der Spin, welcher nur in der quantenmechanischen Beschreibung existiert, entspricht dabei grob einer dem Teilchen eigenen Rotation um die eigene Achse.

In einfachen Materialien wie den meisten Isolatoren und metallischen Leitern hat der Spin nur einen geringen Einfluss auf deren Werkstoffeigenschaften. Bei anderen Stoffen wie Magneten und Supraleitern, spielt er dagegen eine entscheidende Rolle. Während man einige Effekte sehr gut versteht, sind doch viele Phänomene bislang nicht vollständig geklärt. Speziell für solche Fälle, in denen bewegliche und unbewegliche Elektronen gleichzeitig vorhanden sind und interagieren, gab es zwar in den frühen 60er Jahren große Erfolge durch die Theorien von Philip Anderson und Jun Kondo, doch viele Systeme sind noch immer nicht wirklich verstanden.

Ein relativ junger Ansatz, komplexe Materialien zu verstehen, ist die sogenannte Quantensimulation des Vielteilchensystems welches von den Elektronen gebildet wird. Dazu können die Kristallstrukturen von Materie mit Laserstrahlen nachgebaut werden, und ultrakalte Atome übernehmen die Rolle der Elektronen darin. Die muss so geschehen, dass die Wechselwirkung zwischen den Atomen diejenige zwischen den Elektronen in allen wichtigen Eigenschaften korrekt nachbildet.

Um dies zu erreichen und nachzuweisen, präparierten Francesco Scazza und Kollegen ein extrem kaltes Ensemble aus fermionischen Ytterbium-Atomen so, dass sie sich als voneinander isolierte Paare aus jeweils zwei Atomen in dem Lichtgitter anordneten. Für Ytterbium-Atome, die zu den Seltenen Erden zählen, sagte die Theorie vorher, dass aufgrund ihrer spezifischen internen Struktur die Wechselwirkung zwischen beweglichen und unbeweglichen Teilchen analog zu jener zwischen Elektronen unterschiedlicher Orbitale stattfindet. Dabei handelt es sich um einen Vorgang, bei dem zwei Atome bei Kontakt ihre Spin-Eigenschaften austauschen (wobei sie ihre ursprünglichen Orbitale beibehalten) und zusätzlich aneinander abgelenkt werden (siehe Abb. 1).

Dieses Verhalten wurde von dem japanischen Physiker Jun Kondo als Erklärung für die extrem starken Unterschiede in der Leitfähigkeit von Metallen vorgeschlagen. Derselbe Vorgang wird auch mit Phänomenen wie dem Auftreten „Schwerer“ Elektronen oder dem Herausbilden bestimmter Formen von Supraleitung und magnetischer Ordnung in Materialien in Verbindung gebracht. Das Modell ist auch wichtig für den noch immer rätselhaften Effekt des „kolossalen magnetischen Widerstands“, welcher trotz seines nicht völlig verstandenen Mechanismus in Hinblick auf seine mögliche Nutzung für neuartige elektronische und „spintronische“ Geräte große Aufmerksamkeit erfährt.

Wenn Ytterbium-Atome in die Rolle der Elektronen schlüpfen, ist es der Spin ihres Kerns, der dem Spin des Elektrons entspricht. Da Atome und ihre Kerne weit komplexer aufgebaut sind als ein einzelnes Elektron, hat der Ytterbium-Spin mehr Orientierungsmöglichkeiten. So kann der Spin eines Elektrons nur in zwei Richtungen weisen, das Ytterbium-Atom kann sich dagegen eine von bis zu sechs möglichen Spin-Einstellungen aussuchen. Bei den meisten anderen Elementen sind diese Spin-Zustände nicht gleichwertig, und daher könnten nur zwei der Zustände gleichzeitig auftreten ohne dass die fundamentale „Spin-Symmetrie“ gebrochen wird, die diesem Fall eine sogenannte SU(2)-Symmetrie ist.

Ytterbium aber gehört zu einer kleinen Gruppe von Elementen, bei denen diese Symmetrie auch für mehr als zwei Komponenten vorhergesagt wurde. Mit Ytterbium-Atomen lassen sich daher Vielteilchensysteme einer erweiterten SU(N)-Symmetrie verwirklichen. „Diese Aussicht ist besonders interessant, denn wir erwarten für solche Systeme, die es in der Natur nicht gibt, sehr ungewöhnliche und schwer vorhersagbare Eigenschaften, wie etwa exotisches Ordnungsverhalten“, erklärt Francesco Scazza, Doktorand am Experiment. „Vor unseren Messungen war nicht klar, ob eine solche Symmetrie nicht durch zusätzliche Orbitale oder den Spin-Austausch zwischen Atomen gebrochen werden kann.“

Die isolierten Atom-Paare wurden im Experiment mit Laserlicht bestrahlt, dessen Frequenz auf 12 Dezimalstellen genau kontrolliert werden musste. Aufgrund dieser extrem hohen Stabilität der Laser und der Verwendung spezieller, auf den Spin empfindlichen Präparations- und Nachweismethoden waren die Münchner Physiker in der Lage, die Spin-Austausch-Wechselwirkung quantitativ zu bestimmen, verschiedene Spin-Kombinationen unabhängig voneinander zu analysieren und die spezifische sechsfache Spin-Symmetrie nachzuweisen (siehe Abb. 2). Darüber hinaus gelang es Scazza und seinen Kollegen, die Spin-Austausch-Prozesse in Echtzeit zu beobachten, indem sie die zeitliche Entwicklung der Populationen der verschiedenen Spin-Zustände bestimmten.

Die isolierten Atom-Paare wurden im Experiment mit Laserlicht bestrahlt, dessen Frequenz auf 12 Dezimalstellen genau kontrolliert werden musste. Aufgrund dieser extrem hohen Stabilität der Laser und der Verwendung spezieller, auf den Spin empfindlichen Präparations- und Nachweismethoden waren die Münchner Physiker in der Lage, die Spin-Austausch-Wechselwirkung quantitativ zu bestimmen, verschiedene Spin-Kombinationen unabhängig voneinander zu analysieren und die spezifische sechsfache Spin-Symmetrie nachzuweisen (Abbildung 2). Darüber hinaus gelang es Scazza und seinen Kollegen, die Spin-Austausch-Prozesse in Echtzeit zu beobachten, indem sie die zeitliche Entwicklung der Populationen der verschiedenen Spin-Zustände bestimmten.

Die Experimente sind ein großer Fortschritt für die Simulation von Materialien aus stark korrelierten Elektronen mit Hilfe ultrakalter Atome. Sie bieten verschiedene Wege für die Beobachtung von komplexen und sogar vollständig neuartigen Materiephasen an, von magnetischen bis zu „Schwere Fermionen“-Materialien, und von Spin-Flüssigkeiten bis zu exotischen Magneten mit Ordnungen höherer Symmetrie.

Original Veröffentlichung
Marcos Atala, Monika Aidelsburger, Michael Lohse, Julio T. Barreiro, Belén Paredes and Immanuel Bloch
Observation of chiral currents with ultracold atoms in bosonic ladders
Nature Physics, 2998 (2014), Advance Online Publication

Kontakt:

Dr. Simon Fölling
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 2180 -6133
E-Mail: simon.foelling@lmu.de

Francesco Scazza, M. Sc.
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 2180 -6119
E-Mail: francesco.scazza@physik.uni-muenchen.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften