Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakalte Atome jonglieren ihre Spins mit außergewöhnlicher Symmetrie

03.09.2014

LMU/MPQ-Wissenschaftler weisen einen hochsymmetrischen Spin-Austausch zwischen Atomen in unterschiedlichen Orbitalen nach

Das physikalische Verhalten von Stoffen ist zum größten Teil bestimmt durch die Wechsel-wirkungen und die Bewegungen der Elektronen innerhalb des Materials. Während es sich bei einem einzelnen Elektron um ein relativ einfaches Objekt handelt, das lediglich durch seine Masse, seine elektrische Ladung und seinen Eigendrehimpuls, den sogenannten Spin, charakterisiert ist, kann das kollektive Verhalten eines Systems aus vielen interagierenden Elektronen außerordentlich komplex sein.


Abb. 1 Schematische Darstellung einer Spin-Austausch-Kollision. Zwei Atome in verschiedenen Orbitalen (grün und blau) und mit verschiedenen Spin-Orientierungen (schwarze Pfeile) stoßen zusammen. Entscheidend ist, dass nach dem Zusammenstoß beide Spinvektoren unverändert sind, aber zwischen den Atomen ohne Änderung der Orientierungen ausgetauscht werden. (Grafik: LMU-München / MPQ, Abt. Quanten-Vielteilchensysteme).


Abb. 2: Die sechs verschiedenen Spin-Zustände der SU(N=6) Symmetriegruppe können voneinander getrennt und dann abgebildet werden. Die Analyse der Daten verschiedener Populationen zeigt, dass die Dynamik des Prozesses unabhängig von der Wahl der anfänglichen Spin-Kombination ist. (Grafik: LMU-München / MPQ, Abt. Quanten-Vielteilchensysteme).

Dies korrekt zu beschreiben ist meist der Schlüssel zum Verständnis der Materialeigenschaften. Materie mit komplexem kollektivem Verhalten, insbesondere solche, bei denen die Wechselwirkung der Elektronen auch deren Spins involviert, stellen dabei eine besondere theoretische und experimentelle Herausforderung dar. Seit einigen Jahren versucht man daher, das Verhalten von Ensembles von Elektronen in besonders gut kontrollierten Bedingungen nachzubilden, indem man ultrakalte Gase in künstlichen Gittern aus Licht als Modelle für kristalline Festkörper präpariert.

Ein Team von Simon Fölling und Immanuel Bloch (Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München und Direktor am Max-Planck-Institut für Quantenoptik) hat nun gezeigt, dass bestimmte Atome auch durch Austausch ihrer Spins wechselwirken können, auch wenn sie sich in verschiedenen „elektronischen Orbitalen“ befinden. Dieser Prozess war bisher nur bei Elektronen bekannt (Nature Physics, Advance Online Publication, 31. August 2014).

Dazu präparierten die Wissenschaftler die Atome zunächst in verschiedenen Spin-Zuständen, um sie danach paarweise in Wechselwirkung zu bringen. Das Ergebnis wurde analysiert, und die damit verbundene Energiemenge bestimmt. Dabei konnten die Forscher nachweisen, dass der Spin-Austausch-Prozess bei Ytterbium-Atomen in einer besonders symmetrischen Weise stattfinden kann, welche bislang nur theoretisch vorher gesagt worden war und in der Natur nicht beobachtet werden konnte. Der experimentelle Nachweis ebnet den Weg, bislang unzugängliche Quantenphänomene experimentell zu untersuchen.

Elektronen in Festkörpern können generell in zwei Gruppen eingeteilt werden: in bewegliche und unbewegliche. Elektrische Leiter verfügen naturgemäß über viele bewegliche Elektronen, während einfache Isolatoren normalerweise nur unbewegliche besitzen. Doch die Angelegenheit wird weit interessanter, wenn die Elektronen zwischen beiden Klassen wechseln können, wie dies zum Beispiel bei Halbleitern der Fall ist, oder wenn unbewegliche mit beweglichen Elektronen in Wechselwirkung treten können, was in vielen magnetischen Stoffen vorkommt. Ob sich ein Elektron bewegen kann oder nicht, ist durch seine sogenannte Wellenfunktion vorgegeben, die man auch als Orbital bezeichnet. Ein Elektron kann normalerweise durch Angabe von Spin, Orbital und Position vollständig beschrieben werden. Der Spin, welcher nur in der quantenmechanischen Beschreibung existiert, entspricht dabei grob einer dem Teilchen eigenen Rotation um die eigene Achse.

In einfachen Materialien wie den meisten Isolatoren und metallischen Leitern hat der Spin nur einen geringen Einfluss auf deren Werkstoffeigenschaften. Bei anderen Stoffen wie Magneten und Supraleitern, spielt er dagegen eine entscheidende Rolle. Während man einige Effekte sehr gut versteht, sind doch viele Phänomene bislang nicht vollständig geklärt. Speziell für solche Fälle, in denen bewegliche und unbewegliche Elektronen gleichzeitig vorhanden sind und interagieren, gab es zwar in den frühen 60er Jahren große Erfolge durch die Theorien von Philip Anderson und Jun Kondo, doch viele Systeme sind noch immer nicht wirklich verstanden.

Ein relativ junger Ansatz, komplexe Materialien zu verstehen, ist die sogenannte Quantensimulation des Vielteilchensystems welches von den Elektronen gebildet wird. Dazu können die Kristallstrukturen von Materie mit Laserstrahlen nachgebaut werden, und ultrakalte Atome übernehmen die Rolle der Elektronen darin. Die muss so geschehen, dass die Wechselwirkung zwischen den Atomen diejenige zwischen den Elektronen in allen wichtigen Eigenschaften korrekt nachbildet.

Um dies zu erreichen und nachzuweisen, präparierten Francesco Scazza und Kollegen ein extrem kaltes Ensemble aus fermionischen Ytterbium-Atomen so, dass sie sich als voneinander isolierte Paare aus jeweils zwei Atomen in dem Lichtgitter anordneten. Für Ytterbium-Atome, die zu den Seltenen Erden zählen, sagte die Theorie vorher, dass aufgrund ihrer spezifischen internen Struktur die Wechselwirkung zwischen beweglichen und unbeweglichen Teilchen analog zu jener zwischen Elektronen unterschiedlicher Orbitale stattfindet. Dabei handelt es sich um einen Vorgang, bei dem zwei Atome bei Kontakt ihre Spin-Eigenschaften austauschen (wobei sie ihre ursprünglichen Orbitale beibehalten) und zusätzlich aneinander abgelenkt werden (siehe Abb. 1).

Dieses Verhalten wurde von dem japanischen Physiker Jun Kondo als Erklärung für die extrem starken Unterschiede in der Leitfähigkeit von Metallen vorgeschlagen. Derselbe Vorgang wird auch mit Phänomenen wie dem Auftreten „Schwerer“ Elektronen oder dem Herausbilden bestimmter Formen von Supraleitung und magnetischer Ordnung in Materialien in Verbindung gebracht. Das Modell ist auch wichtig für den noch immer rätselhaften Effekt des „kolossalen magnetischen Widerstands“, welcher trotz seines nicht völlig verstandenen Mechanismus in Hinblick auf seine mögliche Nutzung für neuartige elektronische und „spintronische“ Geräte große Aufmerksamkeit erfährt.

Wenn Ytterbium-Atome in die Rolle der Elektronen schlüpfen, ist es der Spin ihres Kerns, der dem Spin des Elektrons entspricht. Da Atome und ihre Kerne weit komplexer aufgebaut sind als ein einzelnes Elektron, hat der Ytterbium-Spin mehr Orientierungsmöglichkeiten. So kann der Spin eines Elektrons nur in zwei Richtungen weisen, das Ytterbium-Atom kann sich dagegen eine von bis zu sechs möglichen Spin-Einstellungen aussuchen. Bei den meisten anderen Elementen sind diese Spin-Zustände nicht gleichwertig, und daher könnten nur zwei der Zustände gleichzeitig auftreten ohne dass die fundamentale „Spin-Symmetrie“ gebrochen wird, die diesem Fall eine sogenannte SU(2)-Symmetrie ist.

Ytterbium aber gehört zu einer kleinen Gruppe von Elementen, bei denen diese Symmetrie auch für mehr als zwei Komponenten vorhergesagt wurde. Mit Ytterbium-Atomen lassen sich daher Vielteilchensysteme einer erweiterten SU(N)-Symmetrie verwirklichen. „Diese Aussicht ist besonders interessant, denn wir erwarten für solche Systeme, die es in der Natur nicht gibt, sehr ungewöhnliche und schwer vorhersagbare Eigenschaften, wie etwa exotisches Ordnungsverhalten“, erklärt Francesco Scazza, Doktorand am Experiment. „Vor unseren Messungen war nicht klar, ob eine solche Symmetrie nicht durch zusätzliche Orbitale oder den Spin-Austausch zwischen Atomen gebrochen werden kann.“

Die isolierten Atom-Paare wurden im Experiment mit Laserlicht bestrahlt, dessen Frequenz auf 12 Dezimalstellen genau kontrolliert werden musste. Aufgrund dieser extrem hohen Stabilität der Laser und der Verwendung spezieller, auf den Spin empfindlichen Präparations- und Nachweismethoden waren die Münchner Physiker in der Lage, die Spin-Austausch-Wechselwirkung quantitativ zu bestimmen, verschiedene Spin-Kombinationen unabhängig voneinander zu analysieren und die spezifische sechsfache Spin-Symmetrie nachzuweisen (siehe Abb. 2). Darüber hinaus gelang es Scazza und seinen Kollegen, die Spin-Austausch-Prozesse in Echtzeit zu beobachten, indem sie die zeitliche Entwicklung der Populationen der verschiedenen Spin-Zustände bestimmten.

Die isolierten Atom-Paare wurden im Experiment mit Laserlicht bestrahlt, dessen Frequenz auf 12 Dezimalstellen genau kontrolliert werden musste. Aufgrund dieser extrem hohen Stabilität der Laser und der Verwendung spezieller, auf den Spin empfindlichen Präparations- und Nachweismethoden waren die Münchner Physiker in der Lage, die Spin-Austausch-Wechselwirkung quantitativ zu bestimmen, verschiedene Spin-Kombinationen unabhängig voneinander zu analysieren und die spezifische sechsfache Spin-Symmetrie nachzuweisen (Abbildung 2). Darüber hinaus gelang es Scazza und seinen Kollegen, die Spin-Austausch-Prozesse in Echtzeit zu beobachten, indem sie die zeitliche Entwicklung der Populationen der verschiedenen Spin-Zustände bestimmten.

Die Experimente sind ein großer Fortschritt für die Simulation von Materialien aus stark korrelierten Elektronen mit Hilfe ultrakalter Atome. Sie bieten verschiedene Wege für die Beobachtung von komplexen und sogar vollständig neuartigen Materiephasen an, von magnetischen bis zu „Schwere Fermionen“-Materialien, und von Spin-Flüssigkeiten bis zu exotischen Magneten mit Ordnungen höherer Symmetrie.

Original Veröffentlichung
Marcos Atala, Monika Aidelsburger, Michael Lohse, Julio T. Barreiro, Belén Paredes and Immanuel Bloch
Observation of chiral currents with ultracold atoms in bosonic ladders
Nature Physics, 2998 (2014), Advance Online Publication

Kontakt:

Dr. Simon Fölling
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 2180 -6133
E-Mail: simon.foelling@lmu.de

Francesco Scazza, M. Sc.
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 2180 -6119
E-Mail: francesco.scazza@physik.uni-muenchen.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics