Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne Wasserfilme zum Fließen gebracht – ein Flachstrahl für die Röntgenspektroskopie

24.08.2015

Ein wichtiger Fortschritt für die Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung. Gemeinsam mit Kollegen entwickelten Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin ein neues Flachstrahlsystem, das den Weg für neuartige stationäre und zeitaufgelöste Experimente ebnet.

Element-spezifische Röntgenmethoden nehmen eine Schlüsselrolle ein bei der Untersuchung der atomaren Struktur und Zusammensetzung funktionaler Materialien. Mit Hilfe der Röntgenspektroskopie können Oxidationszustände, Abstände, Koordinationszahlen und die Art der nächsten Nachbarn des ausgewählten Elementes bestimmt werden.


Flachstrahlsystem für Flüssigkeiten.

Abb.: MBI

Mit einer großen Vielfalt spektroskopischer Methoden mit Röntgenstrahlung wurden bisher zahlreiche gasförmige, flüssige und feste Proben oder molekulare Systeme an Grenzflächen untersucht. Dabei wurden stationäre und zeitabhängige Materialeigenschaften vorwiegend an Synchrotronstrahlungsquellen und neuerdings an Röntgen-Freie-Elektronen-Lasern bestimmt.

Die Untersuchung flüssiger Proben mit Absorptionsspektroskopie im weichen Röntgenbereich (im Energiebereich von ca. 0.2 bis 1.5 keV) stellt eine besondere Herausforderung dar. Zum einen müssen die Experimente unter Ultrahochvakuum-Bedingungen durchgeführt werden, in einer Umgebung also, die scheinbar unvereinbar mit dem hohen Dampfdruck von Wasser ist.

Außerdem erfordert die Messung der Transmission aufgrund der großen Absorptionsquerschnitte im weichen Röntgenbereich schwierig zu realisierende Probendicken im Bereich von einem Mikrometer und darunter (1 Mikrometer = 10-6 m = Ein millionstel Meter). Im Gegensatz dazu sind Messungen des Absorptionsspektrums basierend auf dem Nachweis sekundärer Zerfallssignale, wie zum Beispiel der Röntgenfluoreszenz, auf vergleichsweise hoch konzentrierte Proben beschränkt.

Eine Lösung für diese Probleme stellt die Verwendung von Zellen mit dünnen Membran-basierten Fenstern für Transmissionsmessungen dar. Damit kann die Dicke des Flüssigkeitsfilms zwar kontrolliert werden, allerdings können damit keine strahlungsempfindlichen molekularen Proben untersucht werden, da die Probe im Röntgenstrahl oder in einem sichtbaren Laserstrahl in Laser-Anrege und Röntgen-Abfrage Messungen zerstört wird.

Dieser Strahlenschaden wird vermieden, indem die Probe in einem Flüssigkeitsstrahl kontinuierlich ersetzt wird. Mit solchen Flüssigkeitsstrahlen jedoch, wobei die Flüssigkeit durch eine Düse in die Hochvakuumkammer gepresst wird, ist es schwierig oder gar unmöglich, Probendicken im Bereich von einem Mikrometer oder darunter zu realisieren.

In einer Zusammenarbeit haben nun Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), des Helmholtz-Zentrums Berlin (HZB) und des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) die erfolgreiche Umsetzung eines neuartigen Flachstrahlsystems für Transmissionsmessungen flüssiger Proben im weichen Röntgenbereich gezeigt.

Dabei wurde ein wohlbekanntes Phänomen aus der Fluiddynamik ausgenutzt: Wenn sich zwei identische laminare Flüssigkeitsstrahlen unter einem wohldefinierten Winkel treffen, breitet sich die Flüssigkeit radial aus, was zur Ausbildung eines dünnen blattförmigen Flüssigkeitsfilm senkrecht zur Ebene der beiden Strahlen führt. Dieser Film wird durch eine ebenfalls aus der Flüssigkeit gebildeten Randlippe stabilisiert.

Die Innovation besteht hier darin, dass ein über Stunden stabiler Flachstrahl im Vakuum (bei Drücken kleiner als 10-3 mbar) mit einer Dicke im Bereich von einem bis zwei Mikrometer realisiert und angewendet wurde. Erstmalig konnten damit Absorptionsspektren flüssiger Proben in Transmission mit Photonenenergien im Weichröntgenbereich und völlig ohne Membran-basierte Fenster gemessen werden.

Die röntgenspektroskopischen Messungen wurden an der Synchrotronstrahlungsquelle für weiche Röntgenstrahlung BESSYII des Helmholtz-Zentrums Berlin durchgeführt. Dieser technologische Durchbruch eröffnet völlig neue Möglichkeiten für die stationäre und zeitaufgelöste Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung.

Abb.: Flachstrahlsystem für Flüssigkeiten mit den beiden Düsen, den beiden kollidierenden laminaren Flüssigkeitsstrahlen und dem 1 mm breiten und 5 mm langen blattförmigen Wasserfilm mit einer Dicke von 1 - 2 Mikrometern. Die Dicke des Films wurde aus Transmissionsmessungen an der Sauerstoff K Absorptionskante bestimmt (links). Das Flachstrahlsystem ermöglicht Absorptionsmessungen im weichen Röntgenbereich in Transmission, wie beispielhaft mit der Messung des Absorptionsspektrums an der Stickstoff K Absorptionskante von Ammoniumchlorid gezeigt werden konnte (rechts).

Originalpublikation: Structural Dynamics 2, 054301 (2015)
A liquid flatjet system for solution phase soft-x-ray spectroscopy
Maria Ekimova, Wilson Quevedo, Manfred Faubel, Philippe Wernet, Erik T.J. Nibbering

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin

Dr. Maria Ekimova
ekimova@mbi-berlin.de
+49 (0) 30 6392 1454

Dr. Erik T.J. Nibbering
nibbering@mbi-berlin.de
+49 (0) 30 6392 1477

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie