Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne Lichtdetektoren

25.03.2014

Eine neue, extrem dünne Art von Lichtdetektoren wurde an der TU Wien hergestellt. Dabei kombinierte man erstmals zwei ganz unterschiedliche Technologien: Metamaterialien und Quantenkaskaden-Strukturen.

Ihr subtiles Wechselspiel von Elektronen und Licht macht sie technologisch so interessant: Ultradünne Schichtsysteme aus verschiedenen Halbleitermaterialien können verwendet werden, um mit Hilfe von elektrischer Spannung Licht zu erzeugen, sie können aber auch umgekehrt aus Licht elektrischen Strom machen und als Lichtdetektoren dienen.


Schematische Darstellung des Metamaterial Detektors. Durch das Metamaterial wird das einfallende Terahertz-Licht an die Übergänge im Halbleiter gekoppelt und in ein elektrisches Signal umgewandelt. TU Wien


Die periodische Anordnung und die Größe der Resonatoren im Metamaterial bestimmt den detektierten Wellenlängenbereich. TU Wien

Bisher war es allerdings schwierig, das Licht überhaupt an diese Halbleiter-Schichtsysteme anzukoppeln. Mit einem besonderen Trick gelang das nun an der TU Wien: Man verwendete Meta-Materialien, die aufgrund ihrer besonderen mikroskopischen Struktur das Licht im Terahertz-Bereich auf ganz spezielle Weise manipulieren.

Maßgeschneiderte Halbleiterschichten

„Ultradünne Schichtsysteme aus Halbleitermaterialien haben den großen Vorteil, dass man ihre elektronischen Eigenschaften sehr gut beeinflussen kann“, erklärt Prof. Karl Unterrainer vom Institut für Photonik der TU Wien. Durch die Auswahl der Materialien, der Schichtdicke und Geometrie lässt sich beeinflussen, wie sich die Elektronen in diesen Systemen verhalten. So kann man etwa Quanten-Kaskaden-Laser bauen, in denen Elektronen von Schicht zu Schicht hüpfen und jedes Mal ein Photon aussenden, oder man kann Detektoren herstellen, deren Empfindlichkeit auf eine bestimmte Licht-Wellenlänge optimiert ist.

Das Problem dabei ist allerdings: Die Quantentheorie verbietet Photonen mit bestimmten Schwingungsrichtungen (Polarisation), mit den Elektronen des Schichtsystems zu wechselwirken. Licht, das frontal auf die Schichtfläche fällt, hat auf die Elektronen im Schichtsystem gar keine Auswirkung. Man benötigt daher eine Methode, die Polarisationsrichtung des einfallenden Lichts zu drehen, damit es in den Halbleiterschichten detektiert werden kann.

Künstlicher Schmetterling

Das gelang nun mit einer ungewöhnlichen Methode – mit Metamaterialien. Ein Metamaterial entsteht, indem man eine regelmäßige geometrische Struktur erzeugt, deren Periode kleiner ist als die Wellenlänge des Lichts. Je nach der Geometrie dieser Struktur wird das Licht gestreut, manche Wellenlängen können absorbiert, andere reflektiert werden. Das Schillern auf den Flügeln eines Schmetterlings entsteht genau durch solche Effekte.

Das Metamaterial, das man an der TU Wien nun auf das Halbleiter-Schichtsystem aufbrachte, dreht die Polarisationsrichtung des einfallenden Lichts, wodurch es dann optimal an die Elektronen im Halbleiter ankoppeln kann. Somit löst das Licht dann ein elektrisches Signal aus.

Das Licht das verwendet wurde, ist deutlich langwelliger als das sichtbare Licht: Es handelt sich um Strahlung im Terahertz- oder Infrarotbereich, mit Wellenlängen in der Größenordnung von Zehntelmillimetern. Dieser Wellenlängenbereich ist technologisch sehr wichtig – etwa für Computertechnologie der nächsten Generation – aber es ist oft sehr schwer, mit diesen Wellenlängen zu arbeiten.

Der Detektor direkt am Chip

Die Entdeckung an der TU Wien ermöglicht es nun, Lichtdetektoren für Terahertz-Strahlung direkt in einen Chip einzubauen. „Mit ganz konventionellen Herstellungsmethoden könnte man auf diese Weise große Arrays von Dektektoren herstellen“, erklärt Karl Unterrainer. Viel Platz brauchen die Lichtdetektoren jedenfalls nicht: Um Licht zu detektieren reichen Schichten im Nanometer-Bereich aus – der Detektor ist damit über tausendmal dünner als die Wellenlänge des Lichtes, mit dem er interagiert. 

Rückfragehinweis:
Prof. Karl Unterrainer
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38730
karl.unterrainer@tuwien.ac.at

Dipl.-Ing. Michael Krall
Institut für Photonik
Technische Universität Wien
Gusshausstraße 25-29, 1040 Wien
T: +43-1-58801-38737
michael.krall@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/srep/2014/140310/srep04269/full/srep04269.html Original-Publikation in "Nature Scientific Reports

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie