Eine Uhr mit zwei Zeitangaben: Wenn Quantenmechanik auf die allgemeine Relativitätstheorie trifft

In der allgemeinen Relativitätstheorie läuft die Zeit aufgrund der Deformation der Raumzeit durch massive Objekte unterschiedlich schnell an verschiedenen Orten. Eine Uhr, die in einer Quanten-Superposition zwischen zwei Orten ist, erlaubt es, Quanteninterferenzeffekte in Kombination mit der allgemeinen Relativitätstheorie zu erforschen.<br>(Bildrechte: Quantenoptik, Quantennanophysik, Quanteninformation, Universität Wien)<br>

Die allgemeine Relativitätstheorie, welche die Gravitation, den Raum und die Zeit beschreibt, tritt auf großen Skalen, also bei Sternen und Galaxien, zum Vorschein. Auf der anderen Seite machen sich die fragilen Quanteneffekte bei den kleinsten Teilchen bemerkbar. Deswegen ist es schwer, Effekte zu erforschen, wo beide Theorien zusammenwirken. Theoretische PhysikerInnen unter der Leitung von Èaslav Brukner der Universität Wien schlagen ein neuartiges Experiment vor, um genau dies zu tun. Die Ergebnisse erscheinen nun im Journal „Nature Communications“.

Zeit in der allgemeinen Relativitätstheorie

Eine der wichtigsten Vorhersagen von Einsteins allgemeiner Relativitätstheorie ist die Deformierung der Zeit. Die Theorie sagt voraus, dass Uhren in der Nähe eines massiven Objekts langsamer laufen, und dass sie schneller laufen, je weiter sie von der Masse entfernt sind. Dieser Effekt resultiert im sogenannten „Zwillingsparadoxon“: Wenn einer von zwei identischen Zwillingen auf einer höher gelegenen Ebene lebt, so altert er schneller als der andere Zwilling. Dieser Effekt wurde in klassischen Experimenten bestätigt, jedoch nicht im Zusammenhang mit Quanteneffekten, welches das Ziel des neuartigen Experimentes sein soll.

Quanteninterferenz und Komplementarität

Die Wiener Forschungsgruppe möchte den außergewöhnlichen Quanteneffekt ausnutzen, bei dem ein Teilchen nicht mehr genau lokalisierbar ist. In der Quantenmechanik nennt man diesen Zustand „Superposition“, und er ermöglicht Welleneffekte, also Interferenz, eines einzigen Teilchens. Wenn der Ort des Teilchens jedoch beobachtet wird, so geht dieser Effekt verloren: Es ist nicht möglich, Interferenzeffekte zu beobachten und gleichzeitig die Position des Teilchens zu kennen. Solch eine Verbindung zwischen Information und Interferenz ist ein Beispiel für das Prinzip der Quanten-Komplementarität, welches zuerst von Niels Bohr formuliert wurde. Das jetzt in „Nature Communications“ vorgeschlagene Experiment nutzt dieses Prinzip in Verbindung mit dem „Zwillingsparadoxon“ aus.

Einsteins „Zwillingsparadoxon“ für ein „Quanten-Einzelkind“

Das Team an der Universität Wien beschreibt eine einzige Uhr (ein beliebiges Teilchen mit einem internen Freiheitsgrad), welche in eine Superposition von zwei Orten gebracht wird – ein Ort näher und ein Ort weiter von der Erdoberfläche entfernt. Aufgrund der allgemeinen Relativitätstheorie würde die Uhr unterschiedlich schnell an beiden Orten laufen – so wie die Zwillinge unterschiedlich altern. Da jedoch die Zeit, die durch die Uhr gemessen wird, Information darüber angibt, an welchem Ort die Uhr ist, gehen die Interferenz und die Wellennatur der Uhr verloren. „Es ist das 'Zwillings-Paradoxon' des 'quantenmechanischen Einzelkindes' und verbindet Quanteneffekte mit denen der allgemeinen Relativitätstheorie. Dies wurde noch nie zuvor in Experimenten beobachtet“, sagt Magdalena Zych, Erstautorin der Publikation und Mitglied des Wiener FWF-Doktoratskollegs CoQuS. Es wäre daher das erste Experiment, welches es ermöglicht, die Zeit wie sie in der allgemeinen Relativitätstheorie beschrieben wird, in Verbindung mit der Quanten-Komplementarität zu erforschen.

Die Arbeit wurde unterstützt durch den Fonds zur Förderung der wissenschaftlichen Forschung (FWF), das Foundational Questions Institute (FQXi) und die Europäische Kommission.

Publikation:
„Quantum interferometric visibility as a witness of general relativistic proper time“. M. Zych, F. Costa, I. Pikovski und C. Brukner. DOI: 10.1038/ncomms1498
Wissenschaftlicher Kontakt
Magdalena Zych, MA
Quantenoptik, Quantennanophysik, Quanteninformation
Universität Wien
Boltzmanngasse 5, 1090 Wien
T +43-1-4277-725 83
magdalena.zych@univie.ac.at
Rückfragehinweis
Petra Beckmannova
Quantenoptik, Quantennanophysik, Quanteninformation
Universität Wien
Boltzmanngasse 5, 1090 Wien
T +43-1-4277-295 56
arndt-office@univie.ac.at

Media Contact

Veronika Schallhart Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer