Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Überholspur: RUB-Forscher entwickeln neues Konzept für ultraschnelle Laser

28.10.2011
Spin-Laser auf der Überholspur
Datenübertragung für das Internet von morgen
RUB-Forscher entwickeln neues Konzept für ultraschnelle Laser

Bochumer Elektrotechnikern ist es gelungen, ein neues Konzept für ultraschnelle Halbleiterlaser zu entwickeln. Forscher der RUB nutzen dabei die Eigendrehbewegung von Elektronen, den sogenannten Spin, geschickt aus, um die bisherigen Barrieren für die Geschwindigkeit erfolgreich zu durchbrechen.

Die neuen Spin-Laser haben das Potenzial zukünftig Modulationsfrequenzen deutlich über 100 GHz zu erreichen. Das ist ein entscheidender Schritt zur Hochgeschwindigkeitsdatenübertragung z.B. für das Internet von morgen. Über ihre Ergebnisse berichten die Forscher in der renommierten Zeitschrift „Applied Physics Letters“ des American Institute of Physics.

Optische Datenübertragung: Die Basis unserer Informationsgesellschaft

Die optische Datenübertragung durch Halbleiterlaser ist eine Grundvoraussetzung für die global vernetzte Welt und die heutige Informationsgesellschaft. Der immer größere Vernetzungsgrad und der Wunsch, größere Datenmengen austauschen zu können, bilden die Triebfeder für die Entwicklung immer schnellerer optischer Datenübertragungssysteme. Die maximale Geschwindigkeit herkömmlicher Halbleiterlaser war dabei lange ein begrenzender Faktor – typische Modulationsfrequenzen liegen derzeit bei Werten deutlich unter 50 GHz.

Über 100 GHz möglich: Eine Barriere wackelt

Durch Verwendung von Spin-Lasern konnten die Bochumer Forscher die bisherigen Grenzen für die Modulationsgeschwindigkeit überwinden. Während in konventionellen Lasern die Eigendrehrichtung der injizierten Elektronen völlig willkürlich ist, werden bei den Spin-Lasern nur Elektronen mit vorher festgelegtem Spinzustand verwendet. Durch die Injektion dieser spinpolarisierten Elektronen wird der Laser dazu gezwungen, auf zwei Lasermoden unterschiedlicher Frequenz gleichzeitig zu arbeiten. „Dieser Frequenzunterschied lässt sich leicht durch die sogenannte Doppelbrechung im Resonator einstellen, zum Beispiel indem man den Mikrolaser einfach verbiegt“, sagt Dr. Nils Gerhardt. Durch die Kopplung der beiden Lasermoden im Mikroresonator entsteht eine Schwingung mit neuer Frequenz, die theoretisch weit über 100 GHz erreichen kann. Ihre Ergebnisse erzielten die Forscher um Dr. Gerhardt im Sonderforschungsbereich 491 der Universitäten Bochum und Duisburg-Essen („Magnetische Heteroschichten: Spinstruktur und Spintransport“).

Titelaufnahme

N.C. Gerhardt, M.Y. Li, H. Jähme, H. Höpfner, T. Ackemann, and M.R. Hofmann: „Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers“, Appl. Phys. Lett. 99, 151107 (2011), DOI: 10.1063/1.3651339

Paper im Internet: http://apl.aip.org/resource/1/applab/v99/i15/p151107_s1

Weitere Informationen

Dr. Nils Gerhardt, Lehrstuhl für Photonik und Terahertztechnologie, Fakultät für Elektrotechnik und Informationstechnik der RUB, Tel.: 0234/32-26514, Nils.Gerhardt@rub.de

Angeklickt

Lehrstuhl für Photonik und Terahertztechnologie:
http://www.ptt.rub.de
SFB 491:
http://www.ep4.ruhr-uni-bochum.de/sfb/
Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ptt.rub.de
http://www.ep4.ruhr-uni-bochum.de/sfb/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik