Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Kosmos lassen Sterne und Schwarze Löcher wachsen

09.08.2013
Wie sich Sterne und Schwarze Löcher im Universum aus rotierender Materie bilden können, ist eine der großen Fragen in der Astrophysik. Unstreitig ist: Magnetfelder spielen hier eine entscheidende Rolle.

Diese können nach bisheriger Auffassung aber nur wirken, wenn die Materie elektrisch gut leitfähig ist, was aber etwa in protoplanetaren Scheiben zumindest nicht überall der Fall ist.


Künstlerische Darstellung einer protoplanetaren Scheibe. Pat Rawlings / NASA

Die aktuelle Veröffentlichung von Physikern aus dem Helmholtz-Zentrum Dresden-Rossendorf in „Physical Review Letters“ zeigt, wie Magnetfelder auch in „toten Zonen“ (dead zones) Turbulenzen hervorrufen können und trägt so wesentlich zum Verständnis der Entstehungsprozesse von kompakten Objekten im Kosmos bei.

Als Johannes Kepler Anfang des 17. Jahrhundert seine Bahngesetze aufstellte, konnte er die bedeutende Rolle kosmischer Magnetfelder für die Entstehung von Planetensystemen nicht erahnen. Heute wissen wir, dass sich ohne Magnetfelder Masse gar nicht in kompakten Gebilden wie Sternen und Schwarzen Löchern konzentrieren könnte.

Unser Sonnensystem etwa bildete sich vor 4,6 Milliarden Jahren durch den Einsturz einer gigantischen Gaswolke. Von der Schwerkraft der Wolke wurden die Teilchen in das Zentrum gezogen und so entstand schließlich eine große Scheibe. „Solche Akkretionsscheiben sind aus hydrodynamischer Sicht extrem stabil, weil der Drehimpuls gemäß der Kepler’schen Bahngesetze nach außen hin anwächst.

Man spricht hier von der Kepler-Rotation“, erklärt Dr. Frank Stefani vom HZDR. „Um die hohen Wachstumsraten von Sternen und Schwarzen Löchern zu erklären, muss es einen Mechanismus geben, der die rotierende Scheibe destabilisiert und damit gleichzeitig dafür sorgt, dass Masse nach innen und der Drehimpuls nach außen transportiert wird“, führt er weiter aus.

Magnetische Felder können, wie bereits 1959 von Evgenij Velikhov theoretisch vorhergesagt, in einer stabilen Strömung Turbulenz entfachen. Die fundamentale Bedeutung dieser sogenannten Magneto-Rotationsinstabilität (MRI) für die kosmische Strukturbildung wurde durch die Astrophysiker Steven Balbus und John Hawley aber erst 1991 erkannt, wofür sie im September 2013 den mit einer Million Dollar dotierten „Shaw Prize“ für Astronomie erhalten. Damit die MRI funktioniert, müssen die Scheiben aber eine minimale elektrische Leitfähigkeit aufweisen.

In Gebieten geringer Leitfähigkeit, wie z.B. in den „toten Zonen“ protoplanetarer Scheiben oder in den weit außen liegenden Gebieten der Akkretionsscheiben um supermassive Schwarze Löcher, ist die Wirkung der MRI numerisch nur schwer nachzuvollziehen und deshalb auch umstritten. Ein neuer theoretischer Erklärungsansatz kommt jetzt von Wissenschaftlern des HDZR, die sich bis dato vor allem mit der experimentellen Untersuchung der MRI beschäftigt hatten.

Wettstreit zwischen Physikern und Astrophysikern

Wenn man versucht, die MRI in einem Flüssigmetall-Experiment mit einem ausschließlich in vertikaler Richtung angelegten Magnetfeld – so die reine astrophysikalische Lehre – nachzustellen, dann muss dieses Magnetfeld sehr stark sein. Da gleichzeitig auch die Rotationsgeschwindigkeit sehr hoch sein muss, sind derartige Experimente extrem aufwendig und bisher noch nicht von Erfolg gekrönt gewesen. Mit einem Trick war es Dr. Stefani zusammen mit seinen Kollegen vom HZDR sowie vom Leibniz-Institut für Astrophysik in Potsdam im Jahr 2005 erstmals gelungen, den Himmelsprozess im Labor nachzustellen.

Indem sie das senkrechte durch ein kreisförmiges Magnetfeld ergänzten, konnten sie die MRI schon bei wesentlich geringeren Magnetfeldstärken und Rotationsgeschwindigkeiten beobachten. Ein Schönheitsfehler dieser „helikalen MRI“, so Steven Balbus und Hantao Ji in der aktuellen Augustausgabe der Zeitschrift „Physics Today“, ist die Tatsache, dass sie nur relativ steil nach außen abfallende Rotationsprofile zu destabilisieren vermag, zu denen die Kepler-Rotation zunächst einmal nicht gehört.

Magnetfelder und Strömungen schaukeln sich gegenseitig auf

Diesem gewichtigen Argument aus der Astrophysik setzen die HZDR-Wissenschaftler nun ihre neuesten Erkenntnisse entgegen. Die Berechnungen von Dr. Oleg Kirillov und Dr. Frank Stefani zeigen, dass die helikale MRI sehr wohl für Kepler‘sche Rotationsprofile anwendbar ist, wenn nur das kreisförmige Magnetfeld nicht komplett von außen, sondern wenigstens zu einem kleinen Teil auch in der Akkretionsscheibe selbst erzeugt wird.

„Dies ist in der Tat ein viel realistischeres Szenario. Im Extremfall, dass gar kein vertikales Feld vorhanden ist, haben wir es mit einer Henne-Ei-Problematik zu tun. Ein kreisförmiges Magnetfeld destabilisiert die Scheibe und die entstehende Turbulenz generiert Komponenten von vertikalen Magnetfeldern. Die wiederum reproduzieren durch die besondere Form der Rotationsbewegung der Scheibe das kreisförmige Magnetfeld.“

Ob mit oder ohne vertikales Magnetfeld: Die aktuellen Berechnungen zeigen, dass die MRI durchaus auch in Gebieten geringer Leitfähigkeit wie etwa in den „toten Zonen“ möglich sein kann, in denen Astrophysiker sie bisher nicht vermutet hatten.

Motiviert wurden die HZDR-Wissenschaftler durch ihre langjährige Erfahrung mit Laborexperimenten zu kosmischen Magnetfeldern, angefangen bei einem Modell des Erddynamos über die Magneto-Rotationsinstabilität bis hin zur Tayler-Instabilität. Letztere wird von Astrophysikern unter anderem in Bezug auf kosmische Jets und die Entstehung von Neutronensternen diskutiert, muss aber etwa auch bei der Konstruktion großer Flüssigmetall-Batterien beachtet werden. Derzeit planen die Wissenschaftler ein großes Experiment mit flüssigem Natrium, das sie im Rahmen des DRESDYN-Projektes in den nächsten Jahren realisieren wollen.

„Wenn wir dieses Experiment, das erstmalig die MRI mit der Tayler-Instabilität kombiniert, zum Laufen bringen, können wir das Zusammenwirken von unterschiedlichen magnetischen Phänomenen im Kosmos noch viel besser verstehen“, freut sich Stefani. Egal, wer im freundschaftlichen Wettstreit die Nase vorne hat, die experimentellen Physiker aus dem Helmholtz-Zentrum Dresden-Rossendorf oder die theoretischen Astrophysiker aus Amerika, der Drehimpuls-Transport in der Astrophysik und im Labor wird weiter ein spannendes Thema bleiben.

Publikationen:
O.N. Kirillov, F. Stefani: Extending the range of the inductionless magnetorotational instability, in Physical Review Letters 111 (2013), S. 061103, DOI-Link: http://link.aps.org/doi/10.1103/PhysRevLett.111.061103

H. Ji, S. Balbus: Angular momentum transport in astrophysics and in the lab, in Physics Today, August 2013, S. 27 - 33.

Weitere Informationen:
Dr. Frank Stefani
Institut für Fluiddynamik im HZDR
Tel.: 0351 260 - 3069 | f.stefani@hzdr.de
Medienkontakt:
Dr. Christine Bohnet
Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56 | c.bohnet@hzdr.de |
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie

Kaiserschnitt-Risiko ist vererbbar

17.10.2017 | Biowissenschaften Chemie