Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Kosmos lassen Sterne und Schwarze Löcher wachsen

09.08.2013
Wie sich Sterne und Schwarze Löcher im Universum aus rotierender Materie bilden können, ist eine der großen Fragen in der Astrophysik. Unstreitig ist: Magnetfelder spielen hier eine entscheidende Rolle.

Diese können nach bisheriger Auffassung aber nur wirken, wenn die Materie elektrisch gut leitfähig ist, was aber etwa in protoplanetaren Scheiben zumindest nicht überall der Fall ist.


Künstlerische Darstellung einer protoplanetaren Scheibe. Pat Rawlings / NASA

Die aktuelle Veröffentlichung von Physikern aus dem Helmholtz-Zentrum Dresden-Rossendorf in „Physical Review Letters“ zeigt, wie Magnetfelder auch in „toten Zonen“ (dead zones) Turbulenzen hervorrufen können und trägt so wesentlich zum Verständnis der Entstehungsprozesse von kompakten Objekten im Kosmos bei.

Als Johannes Kepler Anfang des 17. Jahrhundert seine Bahngesetze aufstellte, konnte er die bedeutende Rolle kosmischer Magnetfelder für die Entstehung von Planetensystemen nicht erahnen. Heute wissen wir, dass sich ohne Magnetfelder Masse gar nicht in kompakten Gebilden wie Sternen und Schwarzen Löchern konzentrieren könnte.

Unser Sonnensystem etwa bildete sich vor 4,6 Milliarden Jahren durch den Einsturz einer gigantischen Gaswolke. Von der Schwerkraft der Wolke wurden die Teilchen in das Zentrum gezogen und so entstand schließlich eine große Scheibe. „Solche Akkretionsscheiben sind aus hydrodynamischer Sicht extrem stabil, weil der Drehimpuls gemäß der Kepler’schen Bahngesetze nach außen hin anwächst.

Man spricht hier von der Kepler-Rotation“, erklärt Dr. Frank Stefani vom HZDR. „Um die hohen Wachstumsraten von Sternen und Schwarzen Löchern zu erklären, muss es einen Mechanismus geben, der die rotierende Scheibe destabilisiert und damit gleichzeitig dafür sorgt, dass Masse nach innen und der Drehimpuls nach außen transportiert wird“, führt er weiter aus.

Magnetische Felder können, wie bereits 1959 von Evgenij Velikhov theoretisch vorhergesagt, in einer stabilen Strömung Turbulenz entfachen. Die fundamentale Bedeutung dieser sogenannten Magneto-Rotationsinstabilität (MRI) für die kosmische Strukturbildung wurde durch die Astrophysiker Steven Balbus und John Hawley aber erst 1991 erkannt, wofür sie im September 2013 den mit einer Million Dollar dotierten „Shaw Prize“ für Astronomie erhalten. Damit die MRI funktioniert, müssen die Scheiben aber eine minimale elektrische Leitfähigkeit aufweisen.

In Gebieten geringer Leitfähigkeit, wie z.B. in den „toten Zonen“ protoplanetarer Scheiben oder in den weit außen liegenden Gebieten der Akkretionsscheiben um supermassive Schwarze Löcher, ist die Wirkung der MRI numerisch nur schwer nachzuvollziehen und deshalb auch umstritten. Ein neuer theoretischer Erklärungsansatz kommt jetzt von Wissenschaftlern des HDZR, die sich bis dato vor allem mit der experimentellen Untersuchung der MRI beschäftigt hatten.

Wettstreit zwischen Physikern und Astrophysikern

Wenn man versucht, die MRI in einem Flüssigmetall-Experiment mit einem ausschließlich in vertikaler Richtung angelegten Magnetfeld – so die reine astrophysikalische Lehre – nachzustellen, dann muss dieses Magnetfeld sehr stark sein. Da gleichzeitig auch die Rotationsgeschwindigkeit sehr hoch sein muss, sind derartige Experimente extrem aufwendig und bisher noch nicht von Erfolg gekrönt gewesen. Mit einem Trick war es Dr. Stefani zusammen mit seinen Kollegen vom HZDR sowie vom Leibniz-Institut für Astrophysik in Potsdam im Jahr 2005 erstmals gelungen, den Himmelsprozess im Labor nachzustellen.

Indem sie das senkrechte durch ein kreisförmiges Magnetfeld ergänzten, konnten sie die MRI schon bei wesentlich geringeren Magnetfeldstärken und Rotationsgeschwindigkeiten beobachten. Ein Schönheitsfehler dieser „helikalen MRI“, so Steven Balbus und Hantao Ji in der aktuellen Augustausgabe der Zeitschrift „Physics Today“, ist die Tatsache, dass sie nur relativ steil nach außen abfallende Rotationsprofile zu destabilisieren vermag, zu denen die Kepler-Rotation zunächst einmal nicht gehört.

Magnetfelder und Strömungen schaukeln sich gegenseitig auf

Diesem gewichtigen Argument aus der Astrophysik setzen die HZDR-Wissenschaftler nun ihre neuesten Erkenntnisse entgegen. Die Berechnungen von Dr. Oleg Kirillov und Dr. Frank Stefani zeigen, dass die helikale MRI sehr wohl für Kepler‘sche Rotationsprofile anwendbar ist, wenn nur das kreisförmige Magnetfeld nicht komplett von außen, sondern wenigstens zu einem kleinen Teil auch in der Akkretionsscheibe selbst erzeugt wird.

„Dies ist in der Tat ein viel realistischeres Szenario. Im Extremfall, dass gar kein vertikales Feld vorhanden ist, haben wir es mit einer Henne-Ei-Problematik zu tun. Ein kreisförmiges Magnetfeld destabilisiert die Scheibe und die entstehende Turbulenz generiert Komponenten von vertikalen Magnetfeldern. Die wiederum reproduzieren durch die besondere Form der Rotationsbewegung der Scheibe das kreisförmige Magnetfeld.“

Ob mit oder ohne vertikales Magnetfeld: Die aktuellen Berechnungen zeigen, dass die MRI durchaus auch in Gebieten geringer Leitfähigkeit wie etwa in den „toten Zonen“ möglich sein kann, in denen Astrophysiker sie bisher nicht vermutet hatten.

Motiviert wurden die HZDR-Wissenschaftler durch ihre langjährige Erfahrung mit Laborexperimenten zu kosmischen Magnetfeldern, angefangen bei einem Modell des Erddynamos über die Magneto-Rotationsinstabilität bis hin zur Tayler-Instabilität. Letztere wird von Astrophysikern unter anderem in Bezug auf kosmische Jets und die Entstehung von Neutronensternen diskutiert, muss aber etwa auch bei der Konstruktion großer Flüssigmetall-Batterien beachtet werden. Derzeit planen die Wissenschaftler ein großes Experiment mit flüssigem Natrium, das sie im Rahmen des DRESDYN-Projektes in den nächsten Jahren realisieren wollen.

„Wenn wir dieses Experiment, das erstmalig die MRI mit der Tayler-Instabilität kombiniert, zum Laufen bringen, können wir das Zusammenwirken von unterschiedlichen magnetischen Phänomenen im Kosmos noch viel besser verstehen“, freut sich Stefani. Egal, wer im freundschaftlichen Wettstreit die Nase vorne hat, die experimentellen Physiker aus dem Helmholtz-Zentrum Dresden-Rossendorf oder die theoretischen Astrophysiker aus Amerika, der Drehimpuls-Transport in der Astrophysik und im Labor wird weiter ein spannendes Thema bleiben.

Publikationen:
O.N. Kirillov, F. Stefani: Extending the range of the inductionless magnetorotational instability, in Physical Review Letters 111 (2013), S. 061103, DOI-Link: http://link.aps.org/doi/10.1103/PhysRevLett.111.061103

H. Ji, S. Balbus: Angular momentum transport in astrophysics and in the lab, in Physics Today, August 2013, S. 27 - 33.

Weitere Informationen:
Dr. Frank Stefani
Institut für Fluiddynamik im HZDR
Tel.: 0351 260 - 3069 | f.stefani@hzdr.de
Medienkontakt:
Dr. Christine Bohnet
Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56 | c.bohnet@hzdr.de |
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen werden Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik