Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Griff

19.03.2010
Wissenschaftlern vom Max-Planck-Institut für Dynamik und Selbstorganisation gelingt es, turbulente Strömungen zu beruhigen - und auf diese Weise Energie zu sparen.

Turbulente Strömungen sind Energiefresser. Ganz gleich ob Öl durch eine Pipeline oder Wasser durch ein städtisches Versorgungsrohr gepumpt wird - die turbulenten Verwirbelungen verschlingen oft mehr als zehnmal so viel Energie wie eine ruhige Strömung derselben Geschwindigkeit.

Wissenschaftlern vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) in Göttingen und der Harvard University in den USA ist es nun gelungen, bei niedrigen Geschwindigkeiten solche Turbulenzen gezielt zu beenden. Das Besondere: Das neue Verfahren benötigt so wenig Energie, dass sich erstmals unterm Strich Energie einsparen lässt. (Science, 19. März 2010)

Gluckernd und sprudelnd wie ein Gebirgsbach bahnen sich turbulente Strömungen ihren Weg. Ein Teil der Energie, welche die Strömung antreibt, verliert sich dabei in Wirbeln und Strudeln. Ganz anders sieht dies bei einer ruhigen, laminaren Strömung aus. Hier ist allein die Reibung für Energieverluste verantwortlich. "Turbulente Strömungen gezielt zu beruhigen, ist deshalb für viele industrielle Anwendungen von großem Interesse", erklärt Björn Hof vom Max-Planck-Institut für Dynamik und Selbstorganisation.

In ihren Experimenten wandten sich die Forscher zunächst einem Spezialfall zu: In einer zwölf Meter langen Glasröhre mit einem Durchmesser von nur drei Zentimetern erzeugten sie einen turbulenten Wirbel, der sich mit der ansonsten laminaren Wasserströmung stromabwärts bewegt. Winzige Teilchen im Wasser, die ein Laser hell aufleuchten ließ, erlaubten es, die Bewegung des Wassers genau zu verfolgen. Dabei zeigte sich, dass die Geschwindigkeitsverteilungen in den turbulenten und laminaren Abschnitten der Strömung sehr verschieden sind: Während die laminare Strömung am Röhrenrand langsam und in der Mitte sehr schnell fließt, ist die turbulente Strömung auch am Rand vergleichsweise schnell unterwegs.

"Um den turbulenten Wirbel zu zerstören, ist vor allem sein hinterer Grenzbereich zur laminaren Strömung entscheidend", erklärt Hof. "Denn an dieser Stelle entstehen die Verwirbelungen, die die Turbulenz antreibt." In Computersimulationen veränderten die Forscher über einen kurzen Zeitraum an dieser Stelle die Geschwindigkeitsverteilung: In der Mitte des Glasrohrs bremsten sie die Strömung ab und beschleunigten sie am Rand, wobei die Durchflussrate konstant blieb. Auf diese Weise steht in der Mitte des Rohrs nicht mehr genug Energie zur Verfügung, um die Verwirbelungen effektiv "anzuschieben". Das Ergebnis: Die turbulente Störung zerfällt - und bleibt verschwunden.

Doch wie lässt sich im Experiment die Strömung auf dieselbe Weise manipulieren? Die Lösung des Problems hört sich zunächst paradox an. Denn die Wissenschaftler erweiterten das Glasrohr um eine Art "Kontrollpunkt", an der sie in regelmäßiger Abfolge gezielt zusätzliche Wirbel erzeugten. Der Trick: Folgen diese Wirbel dicht genug aufeinander, beeinflusst der nachfolgende Wirbel mit seiner turbulenten Geschwindigkeitsverteilung den hinteren Grenzbereich seines Vorgängers ähnlich wie in der Computersimulation: Die Flussgeschwindigkeit in der Mitte des Rohrs nimmt ab und der Vorgängerwirbel zerfällt. Am Kontrollpunkt entsteht somit eine Kette von Wirbeln, von denen der nachfolgende stets seinem Vorgänger die nötige Energie raubt. Wirbel, die weiter stromaufwärts durch andere Einflüsse entstehen, werden an der Kontrollstelle auf diese Weise ebenfalls abgefangen. Jenseits der Kontrollstelle ist die Strömung somit vollständig laminar.

Die Situation im Glasrohr ist somit vergleichbar mit einer Regatta, bei der an einer bestimmten Stelle - der Kontrollstelle - ständig neue Segelboote in das Rennen gehen. Schließlich liegen die Boote so dicht hintereinander, dass der jeweilige Hintermann dem Vordermann den Wind aus den Segeln nimmt und das Rennen komplett zu Stillstand kommt. Auf diese Weise bleibt die Strecke jenseits des Kontrollpunktes frei von Booten.

"Weil unser Verfahren nur an einer Stelle ansetzt, benötigt es wenig Energie", so Hof. Die Forscher setzen nur ein Fünftel der Energie ein, die sie insgesamt einsparen konnten. In früheren Experimenten hatten die Göttinger Forscher bereits gezeigt, dass bei moderaten Strömungsgeschwindigkeiten mit der Zeit jede Turbulenz auch ohne äußeres Zutun zerfällt. Allerdings kann das oft viele Jahre dauern. "Da im Prinzip nur der laminare Zustand stabil ist, genügt ein kleiner "Schubs", um die Strömung gezielt zu entwirbeln", so Hof. In zukünftigen Experimenten wollen die Forscher ihre Methode nun auf ausgedehnte Turbulenzen erweitern.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie