Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Griff

19.03.2010
Wissenschaftlern vom Max-Planck-Institut für Dynamik und Selbstorganisation gelingt es, turbulente Strömungen zu beruhigen - und auf diese Weise Energie zu sparen.

Turbulente Strömungen sind Energiefresser. Ganz gleich ob Öl durch eine Pipeline oder Wasser durch ein städtisches Versorgungsrohr gepumpt wird - die turbulenten Verwirbelungen verschlingen oft mehr als zehnmal so viel Energie wie eine ruhige Strömung derselben Geschwindigkeit.

Wissenschaftlern vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) in Göttingen und der Harvard University in den USA ist es nun gelungen, bei niedrigen Geschwindigkeiten solche Turbulenzen gezielt zu beenden. Das Besondere: Das neue Verfahren benötigt so wenig Energie, dass sich erstmals unterm Strich Energie einsparen lässt. (Science, 19. März 2010)

Gluckernd und sprudelnd wie ein Gebirgsbach bahnen sich turbulente Strömungen ihren Weg. Ein Teil der Energie, welche die Strömung antreibt, verliert sich dabei in Wirbeln und Strudeln. Ganz anders sieht dies bei einer ruhigen, laminaren Strömung aus. Hier ist allein die Reibung für Energieverluste verantwortlich. "Turbulente Strömungen gezielt zu beruhigen, ist deshalb für viele industrielle Anwendungen von großem Interesse", erklärt Björn Hof vom Max-Planck-Institut für Dynamik und Selbstorganisation.

In ihren Experimenten wandten sich die Forscher zunächst einem Spezialfall zu: In einer zwölf Meter langen Glasröhre mit einem Durchmesser von nur drei Zentimetern erzeugten sie einen turbulenten Wirbel, der sich mit der ansonsten laminaren Wasserströmung stromabwärts bewegt. Winzige Teilchen im Wasser, die ein Laser hell aufleuchten ließ, erlaubten es, die Bewegung des Wassers genau zu verfolgen. Dabei zeigte sich, dass die Geschwindigkeitsverteilungen in den turbulenten und laminaren Abschnitten der Strömung sehr verschieden sind: Während die laminare Strömung am Röhrenrand langsam und in der Mitte sehr schnell fließt, ist die turbulente Strömung auch am Rand vergleichsweise schnell unterwegs.

"Um den turbulenten Wirbel zu zerstören, ist vor allem sein hinterer Grenzbereich zur laminaren Strömung entscheidend", erklärt Hof. "Denn an dieser Stelle entstehen die Verwirbelungen, die die Turbulenz antreibt." In Computersimulationen veränderten die Forscher über einen kurzen Zeitraum an dieser Stelle die Geschwindigkeitsverteilung: In der Mitte des Glasrohrs bremsten sie die Strömung ab und beschleunigten sie am Rand, wobei die Durchflussrate konstant blieb. Auf diese Weise steht in der Mitte des Rohrs nicht mehr genug Energie zur Verfügung, um die Verwirbelungen effektiv "anzuschieben". Das Ergebnis: Die turbulente Störung zerfällt - und bleibt verschwunden.

Doch wie lässt sich im Experiment die Strömung auf dieselbe Weise manipulieren? Die Lösung des Problems hört sich zunächst paradox an. Denn die Wissenschaftler erweiterten das Glasrohr um eine Art "Kontrollpunkt", an der sie in regelmäßiger Abfolge gezielt zusätzliche Wirbel erzeugten. Der Trick: Folgen diese Wirbel dicht genug aufeinander, beeinflusst der nachfolgende Wirbel mit seiner turbulenten Geschwindigkeitsverteilung den hinteren Grenzbereich seines Vorgängers ähnlich wie in der Computersimulation: Die Flussgeschwindigkeit in der Mitte des Rohrs nimmt ab und der Vorgängerwirbel zerfällt. Am Kontrollpunkt entsteht somit eine Kette von Wirbeln, von denen der nachfolgende stets seinem Vorgänger die nötige Energie raubt. Wirbel, die weiter stromaufwärts durch andere Einflüsse entstehen, werden an der Kontrollstelle auf diese Weise ebenfalls abgefangen. Jenseits der Kontrollstelle ist die Strömung somit vollständig laminar.

Die Situation im Glasrohr ist somit vergleichbar mit einer Regatta, bei der an einer bestimmten Stelle - der Kontrollstelle - ständig neue Segelboote in das Rennen gehen. Schließlich liegen die Boote so dicht hintereinander, dass der jeweilige Hintermann dem Vordermann den Wind aus den Segeln nimmt und das Rennen komplett zu Stillstand kommt. Auf diese Weise bleibt die Strecke jenseits des Kontrollpunktes frei von Booten.

"Weil unser Verfahren nur an einer Stelle ansetzt, benötigt es wenig Energie", so Hof. Die Forscher setzen nur ein Fünftel der Energie ein, die sie insgesamt einsparen konnten. In früheren Experimenten hatten die Göttinger Forscher bereits gezeigt, dass bei moderaten Strömungsgeschwindigkeiten mit der Zeit jede Turbulenz auch ohne äußeres Zutun zerfällt. Allerdings kann das oft viele Jahre dauern. "Da im Prinzip nur der laminare Zustand stabil ist, genügt ein kleiner "Schubs", um die Strömung gezielt zu entwirbeln", so Hof. In zukünftigen Experimenten wollen die Forscher ihre Methode nun auf ausgedehnte Turbulenzen erweitern.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau