Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulente Geburt von Neutronensternen

27.06.2013
Mit den bislang aufwändigsten Computersimulationen gelang es Forschern am Max-Planck-Institut für Astrophysik, die komplizierten Vorgänge bei der Entstehung von Neutronensternen im Zentrum kollabierender Sterne mit zuvor nicht erreichter Genauigkeit zu berechnen.

Diese weltweit ersten dreidimensionalen Modelle mit einer detaillierten Behandlung aller wichtigen physikalischen Effekte bestätigen, dass extrem heftige, stark asymmetrische Schwipp-Schwapp- und Drehbewegungen der stellaren Materie auftreten. Damit stützen die Ergebnisse der Simulationen grundsätzliche Vorstellungen über die dynamischen Prozesse, wenn ein Stern als Supernova explodiert.

Sterne mit mehr als der acht- bis zehnfachen Masse unserer Sonne beenden ihr Leben in einer gewaltigen Explosion, bei der das stellare Gas mit ungeheurer Wucht in den umgebenden Raum geschleudert wird. Solche Supernovaexplosionen gehören zu den energiereichsten und hellsten Phänomenen im Universum und können für Wochen die Strahlkraft einer ganzen Galaxie erreichen. Sie sind der kosmische Ursprungsort chemischer Elemente wie Kohlenstoff, Sauerstoff, Silizium und Eisen, aus denen unsere Erde und unser Körper bestehen, und welche in schweren Sternen über Jahrmillionen erbrütet oder bei der Sternexplosion frisch erzeugt werden.

Supernovae sind aber auch die Geburtsstätten von Neutronensternen, jener höchst exotischen, kompakten Sternleichen, in denen rund die eineinhalbfache Masse der Sonne auf die Größe einer Kugel mit dem Durchmesser Münchens zusammengequetscht wird. Dies geschieht in Bruchteilen einer Sekunde, wenn der stellare Kern unter dem Einfluss der eigenen Schwerkraft in sich zusammenbricht und seine katastrophale Implosion erst dann abstoppt, wenn die Dichte von Atomkernmaterie - gigantische 300 Millionen Tonnen im Volumen eines Zuckerwürfels - überschritten wird.

Aber was verursacht den Supernovaausbruch des Sterns? Wie kommt es zur Umkehr seiner Implosion zu einer Explosion? Die genauen Vorgänge, die sich hierbei abspielen, sind immer noch Gegenstand intensiver Forschung. Neutrinos, mysteriöse Elementarteilchen, die bei den extremen Temperaturen und Dichten im kollabierenden stellaren Kern und entstehenden Neutronenstern in riesiger Zahl erzeugt und abgestrahlt werden, sind der gängigsten Vorstellung zufolge daran entscheidend beteiligt. Wie die Wärmestrahlung eines heißen Heizkörpers heizt die Neutrinostrahlung das den heißen Neutronenstern umgebende stellare Gas und könnte so die Explosion des Sterns "zünden". Nach dieser Vorstellung würden die Neutrinos so lange Energie ins stellare Gas pumpen und Druck aufbauen, bis eine Stoßwelle den Stern in einer Supernova zerreißt. Doch funktioniert dieses theoretische Modell? Ist dies die Erklärung für den immer noch rätselhaften Mechanismus hinter der Sternexplosion?

Leider (oder zum Glück!) lassen sich die Prozesse im Zentrum explodierender Sterne weder im Labor nachmachen, noch kann man sie im tiefen Innern des Sterns, verborgen von vielen Sonnenmassen dichten stellaren Gases, direkt beobachten. Die Forschung ist daher auf extrem aufwändige Computermodelle angewiesen, in denen die komplizierten mathematischen Gleichungen gelöst werden, mit denen die Bewegung des Sterngases und die Physik bei den extremen Temperaturen und Dichten im kollabierenden stellaren Kern beschrieben werden. Dazu werden die leistungsstärksten existierenden Supercomputer eingesetzt, und dennoch konnten bis vor kurzem solche Berechnungen nur mit groben Vereinfachungen durchgeführt werden. Wollte man zum Beispiel die entscheidenden Effekte der Neutrinos genau berechnen, konnte dies bestenfalls in zwei Raumdimensionen geschehen, was bedeutet, dass für den Stern in den Computermodellen eine künstliche Rotationssymmetrie um eine Achse angenommen wurde.

Mit einem durch Unterstützung von Experten am Rechenzentrum Garching (RZG) verbesserten, besonders effizienten und schnellen Computerprogramm, den leistungsstärksten verfügbaren Supercomputern und einer Rechenzeit von rund 150 Millionen Prozessorstunden, dem größten jemals von der "Partnership for Advanced Computing in Europe (PRACE)" Initiative der Europäischen Union vergebenen Kontingent, konnte ein Team von Forschern am Max-Planck-Institut für Astrophysik (MPA) in Garching die Abläufe in kollabierenden Sternen nun erstmals in den drei natürlichen Raumdimensionen im Detail simulieren.

"Dabei benutzten wir fast 16.000 Prozessorkerne im Parallelbetrieb, und dennoch benötigte eine einzige Modellrechnung rund 4,5 Monate", sagt der Doktorand Florian Hanke, der die Simulationen durchführte. Nur zwei Rechenzentren in Europa konnten hierfür hinreichend leistungsfähige Supercomputer für so lange Zeiträume zur Verfügung stellen, nämlich die Rechner CURIE am Très Grand Centre de calcul (TGCC) du CEA bei Paris (Abb. 1a) und SuperMUC am Leibniz-Rechenzentrum (LRZ) in München/Garching (Abb. 1b).

Was sich dabei nach Auswertung und Visualisierung der produzierten vielen Terabytes (1 Terabyte entspricht einer Billion Bytes) von Zahlenkolonnen den Forschern offenbarte, versetzte das Team in Staunen und Aufregung. Das stellare Gas zeigt nicht nur das durch die Neutrinoheizung erwartete wilde Brodeln und Blubbern mit den dafür typischen aufsteigenden Blasen, ähnlich wie bei sprudelnd kochendem Wasser. (Dieser Vorgang wird als "Konvektion" bezeichnet.) Die Wissenschaftler sahen im Sterninneren zusätzlich auch heftige, große Schwipp-Schwapp-Bewegungen, die zeitweise sogar in schnelle, kraftvolle Rotationsbewegungen übergehen (Abb. 2, Film). Ein solches Verhalten war zwar vorher bereits bekannt und hatte die Bezeichung "Akkretionsstoßinstabilität" (oder "SASI" vom englischen "Standing Accretion Shock Instability") erhalten. Diese Bezeichnung soll ausdrücken, dass die Supernovastoßwelle nicht kugelförmig bleibt, sondern starke, pulsierende Asymmetrien ausbildet, die aus kleinen Störungen oszillierend anwachsen. Dies war aber bislang nur in vereinfachten und unvollständigen Modellrechnungen beobachtet worden.

"Mein Kollege Thierry Foglizzo am Forschungsinstitut Service d' Astrophysique des CEA-Saclay bei Paris hat ein genaues Verständnis der Wachstumsbedingungen dieser Instabilität entwickelt", erklärt Hans-Thomas Janka, der Leiter der Forschergruppe. "Er hat ein Experiment konstruiert, in dem bei einem Sprung der Wasserhöhe in einem kreisförmigen Wasserfluss pulsierende Asymmetrien auftreten, ganz analog zur Stoßwelle im kollabierenden Materiestrom um das Supernovazentrum." Anhand dieses "SWASI" ("Shallow Water Analogue of Shock Instability") genannten Phänomens lassen sich dynamische Vorgänge im tiefen Innern eines sterbenden Sterns in vereinfachter Form anhand eines preiswerten Tischexperiments nachvollziehen (Abb. 3), freilich ohne die wichtigen Effekte des Neutrinoheizens. Daher zweifelten viele Wissenschaftler trotzdem am Auftreten dieser Instabilität im Innern von kollabierenden Sternen.

Die Garchinger Forschergruppe konnte nun erstmals zweifelsfrei zeigen, dass die Instabilität auch in den bislang realistischsten Computermodellen eine bedeutende Rolle spielt. "Sie dirigiert nicht nur die Materiebewegungen im Supernovakern, sie prägt dadurch auch den Neutrino- und Gravitationswellensignalen, die bei einer galaktischen Supernova beobachtet werden, charakteristische Signaturen auf. Außerdem macht sie die Sternexplosion extrem asphärisch, so dass der entstehende Neutronenstern eine hohe Rückstoßgeschwindigkeit und eine Eigendrehung erhält", umreißt Teammitglied Bernhard Müller die wichtigsten Konsequenzen solcher dynamischen Vorgänge im Supernovakern.

Die Forscher beabsichtigen nun, mit weiteren Modellen die messbaren Effekte der SASI genauer zu analysieren und ihre Vorhersagen entsprechender Signale zu verbessern. Auch wollen sie mit weiteren und längeren dreidimensionalen Computersimulationen verstehen, wie diese Instabilität mit dem Neutrinoheizen zusammenarbeitet und seine Wirkung verstärkt. Es soll dabei endlich geklärt werden, ob ein solches Zusammenspiel der lang gesuchte Mechanismus ist, der die Supernova auslöst und dabei den Neutronenstern als kompakten Überrest zurücklässt.

Publikationen:

Hanke F., Müller B., Wongwathanarat A., Marek A., Janka H.-Th., "SASI Activity in Three-Dimensional Neutrino-Hydrodynamics Simulations of Supernova Cores", Astrophysical Journal 770, 66 (2013); http://arxiv.org/abs/1303.6269

Foglizzo T., Masset F., Guilet J., Durand G., "Shallow Water Analogue of the Standing Accretion Shock Instability: Experimental Demonstration and a Two-Dimensional Model", Physical Review Letters 108, 051103 (2012); http://arxiv.org/abs/1112.3448

Acknowledgments:

Dank gilt Elena Erastova und Markus Rampp vom Rechenzentrum Garching für die Visualisierung der Simulationsergebnisse und Thierry Foglizzo für die Bereitstellung des Bild- und Filmmaterials von Abb. 3. Dieses Forschungsprojekt wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs/Transregio SFB/TR7 "Gravitationswellen-Astronomie" und des Exzellenzclusters "Origin and Structure of the Universe" unterstützt. Die Simulationen wurden durch PRACE mit Rechenzeit (Tier-0) auf den Supercomputern CURIE TN (GENCI@CEA, Frankreich) und SuperMUC (GCS@LRZ, Garching) ermöglicht. Zur Verarbeitung der Simulationsdaten stand das IBM iDataPlex System hydra des Rechenzentrums Garching zur Verfügung.

Kontakt:

Dr. Hans-Thomas Janka
Max-Planck-Institut für Astrophysik, Garching
Tel.: +49 89 30000-2228
email: hjanka@mpa-garching.mpg.de
Dr. Hannelore Hämmerle
Pressesprecherin
Max-Planck-Institut für Astrophysik, Garching
Tel. +49 89 30000-3980
E-mail: pr@mpa-garching.mpg.de
Abb. 1: Das Team am MPA nutzt für seine Simulationen Supercomputer, die zu den leistungsstärksten der Welt gehören.
(a) CURIE des TGCC-CEA Rechenzentrums mit 77.184 Prozessorkernen und einer nominellen Maximalleistung von 1,667 Petaflop/s (1 Petaflop = 1 Billiarde Flops).
(Bildrechte: GENCI/TGCC-CEA)
(b) SuperMUC des Leibniz-Rechenzentrums mit über 155.000 Prozessorkernen und einer nominellen Maximalleistung von mehr als 3 Petaflop/s.

(Bildrechte: LRZ 2012).

Abb. 2: Turbulente Entwicklung eines Neutronensterns zu sechs Zeitpunkten (0,154, 0,223, 0,240, 0,245, 0,249 und 0,278 Sekunden) nach Beginn der Neutronensternbildung in einer dreidimensionalen Computersimulation. In charakteristischen pilzartigen Blasen "kocht" neutrinogeheiztes Gas, während die "SASI" Instabilität gleichzeitig wilde Pulsationen und Drehbewegungen der gesamten geheizten Materieschicht (rot) und der einhüllenden Supernovastoßwelle (blau) verursacht (siehe Film).

(Visualisierung in Bildern und Film durch Elena Erastova und Markus Rampp, RZG)

Abb. 3: Das "SWASI" Experiment veranschaulicht die dynamischen Vorgänge im Supernovainnern anhand eines kreisförmigen Wasserflusses, der sich aus einem ringförmigen Reservoir speist, über eine gekrümmte Ebene radial auf ein zentrales Rohr zubewegt und dort abströmt (Abb. a). Vom Rohr her bildet sich ein Rückstau, der zu einem Sprung der Wasserhöhe führt. Das Wasser entspricht dem kollabierenden Gas im Supernovakern, das Rohr dem Materie aufsammelnden Neutronenstern und die Wasserstufe dem im stellaren Kern verharrenden Supernovastoß. Unter idealen Bedingungen bleibt die Wasserstufe nahezu kreisrund (Abb. b, Film).
Wird der Wasserfluss erhöht, kommt es zu einer Brechung der Symmetrie, wenn in einer Instabilität kleine Störungen oszillierend anwachsen und zu starken Schwipp-Schwapp-Bewegungen der gesamten, von der Wasserstufe umschlossenen Region (Abb. c, Film)
oder sogar zu Drehbewegungen (Abb. d, Film)
führen. Dieses "SWASI" Phänomen ist physikalisch analog zu der in der Supernova auftretenden SASI Instabilität, allerdings eine Million Mal kleiner und rund hundertmal langsamer.

(Bild- und Filmrechte: Thierry Foglizzo, Laboratoire AIM Paris-Saclay, CEA)

Dr. Hannelore Hämmerle | Max-Planck-Institut
Weitere Informationen:
http://www.mpa-garching.mpg.de/mpa/institute/news_archives/news1306_ddd/news1306_ddd-de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise