Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tunneleffekt relativistisch betrachtet

17.04.2013
Für den Weg durch einen quantenmechanischen Tunnel brauchen Teilchen offenbar länger, als viele Physiker bislang annahmen.

Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg belegen jetzt, dass es eine sehr kurze, aber messbare Zeit braucht, um das Hindernis zu durchdringen. Das ist ein Ergebnis ihrer theoretischen Studie eines Elektrons, das von seinem Atomkern und einem intensiven Laser bis nahe an die Lichtgeschwindigkeit beschleunigt wird und aus dem Atom heraus tunnelt.


Abb. 1: Schematische Darstellung der Tunnelionisation eines hochgeladenen Ions bei relativistischen Laserintensitäten. Die Überlagerung des Coulomb-Potentials des Atomkerns mit dem elektrischen Feld des Lasers bildet eine Potentialbarriere (blau), durch welche das Wellenpaket des Elektrons (grün) in Richtung der elektrischen Feldkomponente hinaus tunneln kann. Im Gegensatz zum nicht-relativistischen Fall wird die Energie des Elektrons (rote Fläche) durch die Wechselwirkung mit dem Magnetfeld ortsabhängig. Darüber hinaus wird das Wellenpaket schon während des Tunnelns durch den ‚Lichtdruck‘ in Ausbreitungsrichtung des Laserstrahls verschoben (durchgezogene grüne Linie, näheres siehe Text).
MPI für Kernphysik

Ein Ball, der einen Hügel hinaufrollt, kann diesen nicht überwinden, wenn seine Anfangsgeschwindigkeit dafür nicht ausreicht. In der Quantenwelt der Atome kann dagegen ein Teilchen mit einer gewissen Wahrscheinlichkeit auf die andere Seite einer Barriere gelangen, auch wenn seine Bewegungsenergie aus klassischer Sicht dafür nicht ausreicht. Physiker sprechen hier vom ‚Tunneleffekt‘, weil das Teilchen die Barriere scheinbar durchtunnelt. Dieser ist von grundlegender Bedeutung und seine Auswirkungen reichen vom radioaktiven Zerfall bis zur technischen Anwendung im Rastertunnelmikroskop. Eine bis heute zum Teil kontrovers diskutierte Frage betrifft die Zeit, die ein Teilchen für das Tunneln braucht, da diesem Vorgang keine klassische Bewegung entspricht.

Ein Beispiel für quantenmechanisches Tunneln bilden Atome, die einem starken Laserfeld ausgesetzt sind. Bildlich gesprochen hat das attraktive Coulomb-Potential des Atomkerns, welches das Elektron an das Atom bindet, die Form eines Trichters. Diesem überlagert sich wie eine geneigte Ebene das elektrische Feld, welches das Elektron herauszerrt. Es bildet sich eine so genannte Potentialbarriere, die das gebundene Elektron vom Bereich freier Bewegung trennt (Abbildung). Handelt es sich bei dem Atom um ein hochgeladenes wasserstoffähnliches Ion (Atomkern plus ein einzelnes Elektron), so bedarf es Laserintensitäten in der Größenordnung von 10^18 W/cm2, um eine nennenswerte Tunnelwahrscheinlichkeit zu erreichen. Bei so hohen Intensitäten muss neben dem elektrischen Feld auch die Wirkung des Magnetfeldes auf das Elektron mit berücksichtigt werden. Dies erfordert eine relativistische Beschreibung des Systems, die über das konventionelle Bild des Tunnelns durch eine Barriere hinausgeht.

Michael Klaiber und Kollegen aus der Abteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik haben die Ionisation wasserstoffähnlicher Ionen in ultrastarken Feldern einschließlich der relativistischen Effekte theoretisch untersucht. Sie konnten zeigen, dass sich das Bild der Tunnelionisation entgegen früherer Vermutungen bei entsprechender Anpassung der Barriere aufrechterhalten lässt. Zudem gewannen sie neue Erkenntnisse zur ‚Tunnelzeit‘. Bisherige experimentelle Versuche, die Tunnelzeit direkt zu messen, waren nicht erfolgreich. Im Rahmen der erreichbaren Messgenauigkeit verläuft das Tunneln praktisch instantan, was auch von quasiklassischen Näherungen des Tunnelverhaltens vorhergesagt wird.

„Wir haben zwei charakteristische Zeiten identifiziert, die sich indirekt bestimmen lassen könnten“, erläutert Michael Klaiber. Da ist zum einen die so genannte Keldysh-Zeit – anschaulich die Zeit, die das Elektron mit seiner klassischen Geschwindigkeit im Atom braucht, um die Tunnelstrecke zu durchqueren. Die Wechselwirkung mit dem Magnetfeld führt generell zu einer Komponente der Endgeschwindigkeit des Elektrons in Richtung des Laserstrahls. Dieser ‚Lichtdruck‘ wirkt einerseits auf die Bewegung des freien Elektrons, nachdem es das Atom durch die Tunnelstrecke verlassen hat. „In unseren Rechnungen fanden wir aber systematisch einen zusätzlichen Beitrag, der proportional zur Keldysh-Zeit ist, also eine Wirkung des Lichtdrucks während des Tunnelns“, so Heiko Bauke, ein weiterer Postdoc auf dem Projekt. Im Prinzip sollte dieser Effekt in Messungen beobachtbar sein.

Die andere Tunnelzeit ist nach den Physikern Eisenbud, Wigner und Smith benannt und betrachtet die Bewegung eines Wellenpakets durch die Barriere. Gegenüber der quasiklassischen Näherung, in der das Tunneln praktisch keine Zeit braucht, ergibt sich hier in der genaueren Rechnung eine endlich große Zeit. Während dieser Tunnelzeit bewirkt der Lichtdruck eine kleine räumliche Verschiebung des Wellenpakets. Der Effekt ist aber leider nicht messbar, da er nur in unmittelbarer Nähe des Atoms auftritt – zu späteren Zeiten ergibt sich kein Unterschied mehr zur quasiklassischen Beschreibung. Dies sollte sich aber ändern, wenn die Tunnelstrecke relativ kurz ist, also bei recht hohen Intensitäten des Laserfeldes. Entsprechende weitergehende Untersuchungen sind aktuell in Arbeit.

Originalveröffentlichung:
Under-the-barrier dynamics in laser-induced relativistic tunneling
Michael Klaiber et al., Phys. Rev. Lett. 110, 153004 (2013)
doi:10.1103/PhysRevLett.110.153004
Kontakt:

Hon.-Prof. Dr. Christoph H. Keitel
Tel.: 06221 516-150
E-Mail: christoph.keitel@mpi-hd.mpg.de

Dr. habil. Karen Z. Hatsagortsyan
Tel.: 06221 516-160
E-Mail: Karen.Hatsagortsyan@mpi-hd.mpg.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.153004
Originalveröffentlichung
http://www.mpi-hd.mpg.de/keitel/
Abteilung Keitel am MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften