Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tunneleffekt braucht Zeit

17.07.2017

Welche Rolle spielt die Zeit beim quantenmechanischen Tunneleffekt? Dieser Frage sind Physiker des Heidelberger MPI für Kernphysik theoretisch und experimentell am Beispiel der Ionisation von Atomen in starken Laserfeldern nachgegangen. Die „Tunnelzeit“ eines Elektrons wird hierzu mit der „Wigner-Methode“ berechnet und die Anfangsbedingungen für die weitere Bewegung im Laserfeld bestimmt. Zum Test dieses Modells wurden die Edelgase Argon und Krypton zugleich unter identischen Bedingungen mit ultrakurzen Laserpulsen ionisiert. Im Vergleich mit dem etablierten „Simple-man model“, wo das Tunneln keine Zeit braucht, konnte die Vorhersage der Wigner-Methode bestätigt werden. [PRL 14. Juli 2017]

Zu den merkwürdigsten Vorgängen in der Quantenwelt gehört der Tunneleffekt. Während ein Ball, der auf eine Bodenwelle zurollt, bei zu geringer Geschwindigkeit diese nicht überwinden kann, vermögen Teilchen im Mikrokosmos Barrieren gleichsam zu durchtunneln. Eine solche Situation tritt bei Ionisation von Atomen in sehr starken elektrischen Feldern (z. B. in hochintensiven Laserpulsen) auf:


Abb. 1: Tunnelionisation im Laserfeld, gefolgt von der Beschleunigung des Elektrons im Laserfeld - die Fälle „Simple man“ und „Wigner“ unterscheiden sich in ihren Anfangsbedingungen.

Grafik: MPIK


Abb. 2:.(a) Rotierender Feldvektor für elliptisch polarisiertes Licht. (b) Impulsverteilung für Feldionisation von Argon in elliptisch polarisierten Laserpulsen.

Grafik: MPIK

Das Elektron befindet sich durch die Anziehungskraft des Atomkerns einem Potentialtopf, der in Richtung des elektrischen Feldes verbogen wird. Die so gebildete Barriere kann das Elektron dann durchtunneln und auf diese Weise freigesetzt werden (Abb. 1a).

Die Tunnelwahrscheinlichkeit ist dabei umso größer, je kürzer die Tunnelstrecke bzw. je stärker das elektrische Feld ist. Demzufolge tritt diese Feldionisation am ehesten im Maximum des eingestrahlten Laserpulses auf. Das freie Elektron wird dann im allmählich abklingenden Laserfeld beschleunigt und der am Ende aufgenommene Impuls (bzw. die Geschwindigkeit des Elektrons) kann experimentell gemessen werden.

Die Bewegung im Laserfeld wird in guter Näherung als klassische Bahn beschrieben, was aber die Kenntnis der Anfangsbedingungen unmittelbar nach dem Tunneln voraussetzt. Die einfachste Betrachtung („Simple-man model“) nimmt an, dass das Tunneln keine Zeit benötigt, das Elektron also instantan am Tunnelausgang erscheint – und zwar mit der Geschwindigkeit Null.

Dieses Modell wurde in den letzten Jahren intensiv debattiert. Erste Experimente ergaben – im Rahmen der Messgenauigkeit – keinen Hinweis auf eine endliche Tunnelzeit. Ganz so einfach ist die Interpretation aber nicht, da auch eine möglicherweise von Null verschiedene Anfangsgeschwindigkeit eine Rolle spielt. Offen war zudem die Frage, wie die klassische Bewegung korrekt mit dem quantenmechanischen Tunnelprozess verknüpft werden kann und ob daraus die Zeitdauer für das Tunneln berechnet werden kann. Eigentlich auf den ersten Blick ein Ding der Unmöglichkeit, handelt es sich doch um einen klassisch verbotenen Vorgang.

Eine Gruppe von Theoretikern um Karen Hatsagortsyan in der Abteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) hat nun mittels der sog. „Wigner-Methode“ eine Lösung dieses Problems gefunden: Hierbei wird zunächst quantenmechanisch die Schrödinger-Gleichung für ein Atom in einem starken elektrischen Feld gelöst. Dann wird die dazu entsprechende „quasiklassische“ Bahn gesucht, der „dominierende Quantenpfad“, der mit der größten Wahrscheinlichkeit zwei Punkte verbindet.

Hieraus ergeben sich dann die Tunnelzeit und die Geschwindigkeit am Tunnelausgang. Im Bereich der untersuchten Laser-Intensitäten braucht das Elektron den Berechnungen zufolge zwischen 80 und 180 Attosekunden, um die Barriere zu durchtunneln. Eine Femtosekunde ist der Millionste Teil einer Milliardstel Sekunden und eine Attosekunde noch einmal einen Faktor 1000 kürzer.

Diese beiden Größen sind nicht direkt messbar, aber sie bestimmen die weitere Entwicklung und es kann daraus die experimentell zugängliche endgültige Geschwindigkeit des Elektrons berechnet werden. Es bietet sich an, Laserlicht mit elliptischer Polarisation zu verwenden – der elektrische Feldvektor rotiert hier auf einer Ellipse. Das in einem solchen Feldverlauf freigesetzte Elektron zeigt ebenfalls eine ellipsenförmige Geschwindigkeits- bzw. Impulsverteilung, die gegenüber der Richtung des maximalen Feldes um einen bestimmten Winkel verdreht ist.

In diesen Winkel gehen die erwähnten Anfangsbedingungen – u.a. die „Startzeit“ ein, weswegen man auch von einer „Attouhr“ spricht: Ein Umlauf (360°) entspricht für die verwendete Laserfrequenz einer Zeit von ca. 2,7 Femtosekunden und ein Winkelgrad demnach ca. 8 Attosekunden.

Nun ist die Übersetzung des Winkels in eine Zeit nicht so einfach, da neben der Tunnelzeit auch noch die Anfangsgeschwindigkeit und die nachfolgende Bewegung in den überlagerten elektrischen Feldern des positiven Rest-Ions und des Lasers zu berücksichtigen sind. Abb. 1b skizziert die unterschiedliche Bewegung für das „Simple-man model“ und die Beschreibung mit der Wigner-Methode.

Erschwerend kommt hinzu, dass der resultierende Effekt sehr klein ist und zudem die Stärke des Laserfeldes eingeht, welche sich experimentell absolut nur recht ungenau bestimmen lässt. Um dieses Problem zu umgehen, haben die Experimentalphysiker um Robert Moshammer in der Abteilung von Thomas Pfeifer am MPIK folgenden Trick verwendet: Sie untersuchten gleichzeitig ein Gemisch aus den Edelgasen Argon und Krypton, deren Ionisationsenergie und damit die Höhe der Barriere und Länge der Tunnelstrecke für ein gegebenes Feld sich geringfügig unterscheiden.

Im „Simple-man model“ sollten sich beide Atome für verschiedene Laserintensitäten praktisch gleich verhalten, da ja Tunnelzeit und Anfangsgeschwindigkeit immer gleich Null sind. In der Beschreibung nach Wigner gehen aber Tunnellänge und Barrierenhöhe ein, welche bei zunehmender Feldstärke kleiner werden.

In der Tat konnte ein kleiner, aber messbarer Unterschied im Drehwinkel zwischen Argon und Krypton gefunden werden (Abb. 3a). Mit zunehmender Intensität wird dieser Unterschied noch größer (Abb. 3b). Ein Maß für die Laserintensität ist die Größe der Ellipse im Maximum der gemessenen Impulsverteilung. Das Ergebnis ist quantitativ in guter Übereinstimmung mit der theoretischen Vorhersage, was das Wigner-Modell bestätigt und damit belegt, dass der Tunnelprozess Zeit braucht, die zudem von der Tunnellänge abhängt.

Originalveröffentlichung:

Experimental evidence for quantum tunneling time
Nicolas Camus, Enderalp Yakaboylu, Lutz Fechner, Michael Klaiber, Martin Laux, Yonghao Mi, Karen Z. Hatsagortsyan, Thomas Pfeifer, Christoph H. Keitel and Robert Moshammer
Phys. Rev. Lett. 119, 023201 (2017); DOI: 10.1103/PhysRevLett.119.023201

Kontakt:

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
Tel.: +49 6221-516-380
E-Mail: thomas.pfeifer(at)mpi-hd.mpg.de

Hon.-Prof. Dr. Christoph H. Keitel
MPI für Kernphysik
Tel.: +49 6221-516-150
E-Mail: christoph.keitel(at)mpi-hd.mpg.de

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.023201 Orginalveröffentlichung
https://www.mpg.de/7099981/quantenmechanisch_tunneleffekt_relativistisch MPG-Presseinformation „Tunneln nahe der Lichtgeschwindigkeit“
https://www.mpi-hd.mpg.de/pfeifer/page.php?id=25 Gruppe „Atoms and molecules in ultra-short laser pulses“ am MPIK
https://www.mpi-hd.mpg.de/personalhomes/karen/ Gruppe „Relativistic and Ultrashort Quantum Dynamics“ am MPIK

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Neue Technik macht Mikro-3D-Drucker präziser
18.04.2018 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungsnachrichten

Aus dem Labor auf die Schiene: Forscher des HI-ERN planen Wasserstoffzüge mit LOHC-Technologie

19.04.2018 | Verkehr Logistik

Neuer Wirkmechanismus von Tumortherapeutikum entdeckt

19.04.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics