Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tunnelbohrung in ein Molekül

11.09.2009
Frankfurter Atomphysiker blicken erstmals in die tieferen Elektronen-Hüllen eines Salzsäure-Moleküls

Elektronen-Wolken sind der Kleber, der Moleküle zusammenhält. Wenn beispielsweise ein Chlor-Atom und ein Wasserstoff-Atom sich zu Salzsäure verbinden, teilen sie sich die äußeren Elektronen so, dass man nicht mehr unterscheiden kann, zu welchem Atom sie vorher gehörten. Aber wie sehen diese Wolken, auch Orbitale genannt, in den inneren Schichten aus?

Bisher stellte man sie sich als diffuse Gebilde vor, in der alle Elektronen gleich sind. Ein am 11. September in der Zeitschrift Science publiziertes Experiment, das Atomphysiker der Goethe-Universität mit kanadischen Kollegen am National Research Council in Ottawa ausführten, zeigt, dass dieses Bild so nicht stimmt. Nutzt man den quantenmechanischen Tunneleffekt, um die tieferen Schichten des Moleküls "anzubohren", zeigt sich, dass auch die inneren Orbitale eine eigenständige Form haben. Ebenso wie im Atom haben sie beispielsweise eine Kugel- oder Hantelform und gehören damit beiden Partnern der Bindung gleichermaßen an.

Um einen Blick ins Innere der Elektronenwolke zu werfen, umgab das Forscherteam gasförmige Salzsäuremoleküle mit einem zylinderförmigen "Käfig" aus speziell polarisiertem Laserlicht. In der Quantenwelt können Elektronen solche Barrieren durchtunneln. Bisher glaubte man aber, dass nur Elektronen von der Oberfläche des Moleküls dazu in der Lage seien. Diese Vorstellung haben die Forscher nun erschüttert. In ihren Experimenten konnten sie erstmals zeigen, dass sich ein solcher Tunnel in ganz seltenen Fällen auch für tiefer gelegene Elektronen auftut. Diese seltenen Ereignisse kann man nur dank einer Eigenart des Salzsäuremoleküls sichtbar machen: verliert es durch den Tunneleffekt eines der beiden äußeren Elektronen, bleibt das Molekül intakt. Wenn jedoch ein Elektron aus der nächst tieferen Schicht entweicht, bricht das Salzsäure-Molekül entzwei.

"Dank einer in Frankfurt entwickelten Technik, der COLTRIMS-Methode, konnten wir die Bruchstücke des Moleküls zusammen mit dem aus dem inneren entkommenen Elektron sichtbar machen", freut sich Prof. Reinhard Dörner, der für die Goethe Universität an dem Experiment beteiligt war. Diese tiefere Schicht der Elektronenwolke zeigt tatsächlich eine völlig andere Form als die ansonsten sichtbare Außenhaut. Das konnten die Forscher anhand der Richtung rekonstruieren, aus der die Elektronen den Käfig aus Laserlicht verließen.

Science 11 September 2009, Akagi et al: Laser Tunnel Ionization from Multiple Orbitals in HCl

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Riedberg, Tel: (069) 798-47003, doerner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bilder magnetischer Strukturen auf der Nano-Skala
20.04.2018 | Georg-August-Universität Göttingen

nachricht Licht macht Ionen Beine
20.04.2018 | Max-Planck-Institut für Festkörperforschung, Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics