Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tunnelbohrung in ein Molekül

11.09.2009
Frankfurter Atomphysiker blicken erstmals in die tieferen Elektronen-Hüllen eines Salzsäure-Moleküls

Elektronen-Wolken sind der Kleber, der Moleküle zusammenhält. Wenn beispielsweise ein Chlor-Atom und ein Wasserstoff-Atom sich zu Salzsäure verbinden, teilen sie sich die äußeren Elektronen so, dass man nicht mehr unterscheiden kann, zu welchem Atom sie vorher gehörten. Aber wie sehen diese Wolken, auch Orbitale genannt, in den inneren Schichten aus?

Bisher stellte man sie sich als diffuse Gebilde vor, in der alle Elektronen gleich sind. Ein am 11. September in der Zeitschrift Science publiziertes Experiment, das Atomphysiker der Goethe-Universität mit kanadischen Kollegen am National Research Council in Ottawa ausführten, zeigt, dass dieses Bild so nicht stimmt. Nutzt man den quantenmechanischen Tunneleffekt, um die tieferen Schichten des Moleküls "anzubohren", zeigt sich, dass auch die inneren Orbitale eine eigenständige Form haben. Ebenso wie im Atom haben sie beispielsweise eine Kugel- oder Hantelform und gehören damit beiden Partnern der Bindung gleichermaßen an.

Um einen Blick ins Innere der Elektronenwolke zu werfen, umgab das Forscherteam gasförmige Salzsäuremoleküle mit einem zylinderförmigen "Käfig" aus speziell polarisiertem Laserlicht. In der Quantenwelt können Elektronen solche Barrieren durchtunneln. Bisher glaubte man aber, dass nur Elektronen von der Oberfläche des Moleküls dazu in der Lage seien. Diese Vorstellung haben die Forscher nun erschüttert. In ihren Experimenten konnten sie erstmals zeigen, dass sich ein solcher Tunnel in ganz seltenen Fällen auch für tiefer gelegene Elektronen auftut. Diese seltenen Ereignisse kann man nur dank einer Eigenart des Salzsäuremoleküls sichtbar machen: verliert es durch den Tunneleffekt eines der beiden äußeren Elektronen, bleibt das Molekül intakt. Wenn jedoch ein Elektron aus der nächst tieferen Schicht entweicht, bricht das Salzsäure-Molekül entzwei.

"Dank einer in Frankfurt entwickelten Technik, der COLTRIMS-Methode, konnten wir die Bruchstücke des Moleküls zusammen mit dem aus dem inneren entkommenen Elektron sichtbar machen", freut sich Prof. Reinhard Dörner, der für die Goethe Universität an dem Experiment beteiligt war. Diese tiefere Schicht der Elektronenwolke zeigt tatsächlich eine völlig andere Form als die ansonsten sichtbare Außenhaut. Das konnten die Forscher anhand der Richtung rekonstruieren, aus der die Elektronen den Käfig aus Laserlicht verließen.

Science 11 September 2009, Akagi et al: Laser Tunnel Ionization from Multiple Orbitals in HCl

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Riedberg, Tel: (069) 798-47003, doerner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,

E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

23.11.2017 | Geowissenschaften

Leistungsfähigere und sicherere Batterien

23.11.2017 | Energie und Elektrotechnik

Ein MRT für Forscher im Maschinenbau

23.11.2017 | Maschinenbau