Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumore unter scharfem Beschuss: Münchener Physiker erzeugen hochenergetische Kohlenstoffstrahlen mit Lasern

11.12.2009
Hochenergetische Ionenstrahlen in guter Qualität und definierter Dosis für die punktgenaue und dennoch kostengünstige Bestrahlung von Tumoren nutzen zu können, steht schon lange auf der Wunschliste der Onkologen.

Moderne Lasertechnik könnte künftig teure Teilchenbeschleuniger ablösen: Einem Team um Prof. Dr. Dietrich Habs von der Ludwig-Maximilians-Universität München ist es nun im Rahmen des Exzellenzclusters "Munich-Centre for Advanced Photonics" (MAP) in Zusammenarbeit mit Wissenschaftlern des Max-Born-Instituts in Berlin gelungen, einen bereits lange vorhergesagten Mechanismus der laserbasierten Strahlenerzeugung erstmals experimentell zu bestätigen.

Die bahnbrechenden Ergebnisse wurden soeben von der Fachzeitschrift Physical Review Letters veröffentlicht.

Kohlenstoffstrahlen gelten als effektivste und für den Patienten schonendste Methode, Tumore zu behandeln, weil sie ihre zerstörerische Kraft erst unmittelbar im Tumor entfalten und nicht schon auf dem Weg dorthin die gesunden Zellen schädigen, wie es bei konventionell eingesetzten Röntgen- oder Elektronenstrahlen der Fall ist. Sie eignen sich daher besonders für die Behandlung von Tumoren in hochsensiblen Regionen, beispielsweise in der Nähe des Hirnstammes, oder für sehr tief im Körper liegende Tumore. Ein Problem stellt derzeit allerdings die Erzeugung dieser Strahlen dar: Stand der Technik sind große Beschleunigeranlagen, die technisch extrem aufwändig und sehr teuer sind - sowohl im Bau als auch im Betrieb. Die meisten Krebspatienten kommen daher gar nicht in den Genuss dieser Behandlung. "Als Mediziner sind wir heute auf die Fortschritte der Physiker angewiesen, um noch mehr Patienten heilen zu können", macht Prof. Dr. Michael Molls vom Klinikum rechts der Isar, ebenfalls Mitglied im Exzellenzcluster, deutlich.

Ionenstrahlen lassen sich jedoch auch mittels kompakter Lasersysteme erzeugen, was gegenüber bisher notwendigen Großanlagen sehr vorteilhaft ist. "Mit der neuen Technik ist der eigentliche Beschleuniger kleiner als die Dicke eines Haares", verdeutlicht Habs. Derart kurze Distanzen sind ausreichend, um Ionen mit hochintensiven Laserpulsen auf hohe Energien zu beschleunigen. Auch die Strahlführung zum Patienten wird wesentlich verkleinert, die tonnenschweren Magnete durch filigrane Spiegel ersetzt. Bisher ist es jedoch nicht gelungen, eine effiziente Methode zu entwickeln um auf alle Ionen die gleiche Energie zu übertragen. Hier setzt die Arbeitsgruppe um Prof. Habs an. Andreas Henig führte zusammen mit Berliner Physikern die ersten erfolgreichen Experimente durch: "Mit den neuesten Messungen haben wir es geschafft, sowohl in der Effizienz der Ionenstrahlerzeugung als auch in der Energieverteilung der beschleunigten Teilchen einen experimentellen Durchbruch zu erzielen."

Die energiereichen Ionen erzeugen die Forscher, indem sie diamantartige Kohlenstoff-Folien mit hochintensiven Laserpulsen bestrahlen. Das starke elektrische Feld im Laserfokus trennt die Atome der Folie in Elektronen und Ionen und erzeugt dadurch ein Plasma. Die enorme Laserintensität (etwa 100 Trillionen mal stärker als die durchschnittliche Strahlungsintensität der Sonne) heizt die leichteren Elektronen stark auf und trennt sie in einer expandierenden Wolke von den trägeren, weil deutlich schwereren Ionen. Ein Ladungstrennungsfeld enormer Stärke entsteht und beschleunigt die Ionen bis auf etwa ein Zehntel der Lichtgeschwindigkeit. Allerdings zeigten die so erzeugten Ionenstrahlen bisher ein breites Energiespektrum, eine medizinische Anwendung dagegen erfordert eine genau definierte Teilchenenergie, um Eindringtiefe und Dosisverteilung präzise zu regeln.

Die Münchner Physiker haben nun erstmals einen Beschleunigungsprozess experimentell demonstriert, der alle Ionen mit gleicher Geschwindigkeit fliegen lässt. Sie haben die Polarisation des Lasers von linear auf zirkular geändert und die Dicke der laserbestrahlten diamantartigen Kohlenstoff-Folien auf wenige Nanometer reduziert - das vermeidet ein unkontrolliertes Aufheizen der Teilchen. Stattdessen drückt das Laserlicht die Elektronen nun kollektiv in einer Nanometer-dünnen Schicht nach vorne und zieht die Kohlenstoff-Ionen mit sich. Die komplette Folie wird wie ein Segel durch den Lichtdruck des Lasers angetrieben, ein Mechanismus, der von Theoretikern bereits lange vorhergesagt wurde.

Die erzielten Resultate ebnen den Weg zu einer kostengünstigeren Erzeugung der vielversprechenden Kohlenstoffstrahlen. Die nächste Herausforderung für die Physiker im Exzellenzcluster ist, die Energie der Ionenstrahlung weiter zu erhöhen. Noch reicht sie für eine effektive Strahlentherapie nicht aus, die Ionen würden nicht tief genug in den Körper eindringen. Habs freut sich dennoch: "Schon in wenigen Monaten werden wir an unserer Biomedical-Beamline am Max-Planck Institut für Quantenoptik hier in Garching mit der ersten Bestrahlung einzelner Zellen starten und zeitgleich die Ionenstrahlparameter weiter verbessern."

Originalveröffentlichung:
Doi: 10.1103/PhysRevLett.103.245003

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de
http://www.ha.physik.uni-muenchen.de/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die Sonne: Motor des Erdklimas
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

nachricht Entfesselte Magnetkraft
23.08.2017 | Generalverwaltung der Max-Planck-Gesellschaft, München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie