Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumore unter scharfem Beschuss: Münchener Physiker erzeugen hochenergetische Kohlenstoffstrahlen mit Lasern

11.12.2009
Hochenergetische Ionenstrahlen in guter Qualität und definierter Dosis für die punktgenaue und dennoch kostengünstige Bestrahlung von Tumoren nutzen zu können, steht schon lange auf der Wunschliste der Onkologen.

Moderne Lasertechnik könnte künftig teure Teilchenbeschleuniger ablösen: Einem Team um Prof. Dr. Dietrich Habs von der Ludwig-Maximilians-Universität München ist es nun im Rahmen des Exzellenzclusters "Munich-Centre for Advanced Photonics" (MAP) in Zusammenarbeit mit Wissenschaftlern des Max-Born-Instituts in Berlin gelungen, einen bereits lange vorhergesagten Mechanismus der laserbasierten Strahlenerzeugung erstmals experimentell zu bestätigen.

Die bahnbrechenden Ergebnisse wurden soeben von der Fachzeitschrift Physical Review Letters veröffentlicht.

Kohlenstoffstrahlen gelten als effektivste und für den Patienten schonendste Methode, Tumore zu behandeln, weil sie ihre zerstörerische Kraft erst unmittelbar im Tumor entfalten und nicht schon auf dem Weg dorthin die gesunden Zellen schädigen, wie es bei konventionell eingesetzten Röntgen- oder Elektronenstrahlen der Fall ist. Sie eignen sich daher besonders für die Behandlung von Tumoren in hochsensiblen Regionen, beispielsweise in der Nähe des Hirnstammes, oder für sehr tief im Körper liegende Tumore. Ein Problem stellt derzeit allerdings die Erzeugung dieser Strahlen dar: Stand der Technik sind große Beschleunigeranlagen, die technisch extrem aufwändig und sehr teuer sind - sowohl im Bau als auch im Betrieb. Die meisten Krebspatienten kommen daher gar nicht in den Genuss dieser Behandlung. "Als Mediziner sind wir heute auf die Fortschritte der Physiker angewiesen, um noch mehr Patienten heilen zu können", macht Prof. Dr. Michael Molls vom Klinikum rechts der Isar, ebenfalls Mitglied im Exzellenzcluster, deutlich.

Ionenstrahlen lassen sich jedoch auch mittels kompakter Lasersysteme erzeugen, was gegenüber bisher notwendigen Großanlagen sehr vorteilhaft ist. "Mit der neuen Technik ist der eigentliche Beschleuniger kleiner als die Dicke eines Haares", verdeutlicht Habs. Derart kurze Distanzen sind ausreichend, um Ionen mit hochintensiven Laserpulsen auf hohe Energien zu beschleunigen. Auch die Strahlführung zum Patienten wird wesentlich verkleinert, die tonnenschweren Magnete durch filigrane Spiegel ersetzt. Bisher ist es jedoch nicht gelungen, eine effiziente Methode zu entwickeln um auf alle Ionen die gleiche Energie zu übertragen. Hier setzt die Arbeitsgruppe um Prof. Habs an. Andreas Henig führte zusammen mit Berliner Physikern die ersten erfolgreichen Experimente durch: "Mit den neuesten Messungen haben wir es geschafft, sowohl in der Effizienz der Ionenstrahlerzeugung als auch in der Energieverteilung der beschleunigten Teilchen einen experimentellen Durchbruch zu erzielen."

Die energiereichen Ionen erzeugen die Forscher, indem sie diamantartige Kohlenstoff-Folien mit hochintensiven Laserpulsen bestrahlen. Das starke elektrische Feld im Laserfokus trennt die Atome der Folie in Elektronen und Ionen und erzeugt dadurch ein Plasma. Die enorme Laserintensität (etwa 100 Trillionen mal stärker als die durchschnittliche Strahlungsintensität der Sonne) heizt die leichteren Elektronen stark auf und trennt sie in einer expandierenden Wolke von den trägeren, weil deutlich schwereren Ionen. Ein Ladungstrennungsfeld enormer Stärke entsteht und beschleunigt die Ionen bis auf etwa ein Zehntel der Lichtgeschwindigkeit. Allerdings zeigten die so erzeugten Ionenstrahlen bisher ein breites Energiespektrum, eine medizinische Anwendung dagegen erfordert eine genau definierte Teilchenenergie, um Eindringtiefe und Dosisverteilung präzise zu regeln.

Die Münchner Physiker haben nun erstmals einen Beschleunigungsprozess experimentell demonstriert, der alle Ionen mit gleicher Geschwindigkeit fliegen lässt. Sie haben die Polarisation des Lasers von linear auf zirkular geändert und die Dicke der laserbestrahlten diamantartigen Kohlenstoff-Folien auf wenige Nanometer reduziert - das vermeidet ein unkontrolliertes Aufheizen der Teilchen. Stattdessen drückt das Laserlicht die Elektronen nun kollektiv in einer Nanometer-dünnen Schicht nach vorne und zieht die Kohlenstoff-Ionen mit sich. Die komplette Folie wird wie ein Segel durch den Lichtdruck des Lasers angetrieben, ein Mechanismus, der von Theoretikern bereits lange vorhergesagt wurde.

Die erzielten Resultate ebnen den Weg zu einer kostengünstigeren Erzeugung der vielversprechenden Kohlenstoffstrahlen. Die nächste Herausforderung für die Physiker im Exzellenzcluster ist, die Energie der Ionenstrahlung weiter zu erhöhen. Noch reicht sie für eine effektive Strahlentherapie nicht aus, die Ionen würden nicht tief genug in den Körper eindringen. Habs freut sich dennoch: "Schon in wenigen Monaten werden wir an unserer Biomedical-Beamline am Max-Planck Institut für Quantenoptik hier in Garching mit der ersten Bestrahlung einzelner Zellen starten und zeitgleich die Ionenstrahlparameter weiter verbessern."

Originalveröffentlichung:
Doi: 10.1103/PhysRevLett.103.245003

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de
http://www.ha.physik.uni-muenchen.de/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Faserlaser mit einstellbarer Wellenlänge
23.05.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Quantenverschränkung auf den Kopf gestellt
22.05.2018 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Faserlaser mit einstellbarer Wellenlänge

23.05.2018 | Physik Astronomie

LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

23.05.2018 | Messenachrichten

Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

23.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics