Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tübinger Forschungsgruppe baut winziges gekoppeltes optisches Pendel

06.08.2015

Plasmonenresonanz von Goldstäbchen lässt sich auf den Nanometer genau stimmen – Künftiger Anwendungsbereich in der Mikroskopie und bei ultra-schnellen Computern

Forschern aus der Arbeitsgruppe von Professor Alfred Meixner und PD Dr. Marc Brecht vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen ist es gelungen, einen ultrakleinen, extrem präzise durchstimmbaren optischen Schalter von nur wenigen Hundert Nanometer Größe zu bauen – ein Nanometer entspricht einem Millionstel Millimeter.


Schematische Darstellung des Experiments mit dem Resonator und dem Goldstäbchen. Der Spiegelab-stand ist in etwa halb so lang wie die Wellenlänge des Lichts (/2). Rechts: Messungen der optischen Eigenschaf-ten des Systems (hier in Form von Spektren) bei Bestrahlen mit einem Laser zur Anregung der Plasmonen-schwingung im Goldstäbchen (beige-farbene Kurven) und nach Bestrahlen mit weißem Licht zur Bestimmung der Resonanzwellenlänge des Hohlrau-mes je nach eingestelltem Spiegelab-stand. Die roten Kurven zeigen die Emissions-Spektren des gekoppelten Systems. Abbildung: Alexander Kon-rad/Universität Tübingen

Der experimentelle Aufbau beruht auf einem Prinzip, das als gekoppeltes optisches Pendel beschrieben werden kann. Die verbundenen Pendel bestehen aus einem nur 40 Nanometer langen Goldstäbchen und einem stimmbaren optischen Mikroresonator. Solch winzige Schalter könnten in der Mikroskopie Anwendung finden oder auch in schnellen, dabei jedoch sehr kleinen Computern. Die Forschungsergebnisse wurden in der aktuellen Ausgabe der Nano Letters veröffentlicht.

Werden Goldstäbchen dieser geringen Größe mit rotem Licht beleuchtet, können ihre Leitungselektronen kollektiv zum Schwingen angeregt werden und so für kurze Zeit die Energie des Lichts speichern. Man spricht bei diesem Phänomen von Plasmonenschwingungen. Gleichzeitig wird dadurch ein starkes elektromagnetisches Wechselfeld in unmittelbarer Nähe des Goldstäbchens erzeugt, wodurch es seine Energie wieder abstrahlt. Die Resonanzfrequenz dieser Schwingungen wird durch die Größe und Form der Goldpartikel bestimmt.

„Das Wechselfeld des Goldpartikels ist somit unser erstes optisches Pendel“, erklärt Alfred Meixner. Seine Schwingungsfrequenz lasse sich jedoch nur indirekt, beispielsweise über elektromagnetische Felder wie etwa sichtbares Licht verändern, was bisher nur sehr ungenau bewerkstelligt werden könne.

Das zweite optische Pendel im Experiment der Forscher ist ein sogenannter optischer Mikroresonator. Hierbei wird durch zwei parallel angeordnete Spiegel ein Hohlraum gebildet, der in der Lage ist, eingestrahltes Licht für kurze Zeit einzusperren. Ist der Abstand der Spiegel so eingestellt, dass sichtbares Licht eine stehende Welle zwischen den Spiegeln ausbilden kann, dann entsteht im Hohlraum ein elektromagnetisches Wechselfeld einer bestimmten und präzise einstellbaren Frequenz. „Dieser Abstand ist unter anderem bei der halben Wellenlänge des Lichts erreicht und liegt somit im Bereich von wenigen hundert Nanometern“, erklärt Marc Brecht. „Wir haben hier in Tübingen einen verlässlichen, reproduzierbaren und einfachen Aufbau entwickelt, mit dem wir den Spiegelabstand bis auf den Nanometer genau einstellen können.“

Im Experiment erhielten die Forscher durch Veränderung des Abstands beziehungsweise die Wellenlänge im Resonator entsprechend eine Abstrahlung von Licht variierender Wellenlänge von dem Goldstäbchen. „Die im Gesamtsystem gespeicherte Energie wird abwechselnd zwischen der Plasmonenschwingung im Goldstäbchen und der stehenden Welle im Resonator ausgetauscht“, sagt Brecht. „Die Systeme sind stark gekoppelt.“

Je ähnlicher sich die Frequenzen dieser beiden Pendel sind, umso stärker wird der Effekt. „Die Stärke der Kopplung zwischen Mikroresonator und Plasmon reicht aus, um die optischen Eigenschaften des Goldstäbchens gezielt zu verändern. Das gelingt uns einfach dadurch, dass wir den Spiegelabstand in Namometerschritten vergrößern oder verkleinern“, setzt Meixner hinzu.

Bisher war es nicht möglich, die optischen Eigenschaften der Plasmonenschwingungen von nanoskopischen Goldpartikeln allein durch ihre optische Umgebung zu verändern. „In immer größerem Maße wird eine Verkleinerung von Bauelementen zum optischen Schalten und Übertragen von schnellen Signalen gefordert, wie wir sie heute schon in Glasfasernetzen nutzen“, sagt der Wissenschaftler. Miniaturisierte Elemente, die mit optischen Feldern schaltbar sind, könnten in naher Zukunft beispielsweise in ultra-schnellen Computern Anwendung finden. Aber auch das sich rasant entwickelnde Feld der Mikrobiologie sei angewiesen auf kleinste optische Sensoren, die Auskunft über fundamentale Eigenschaften der mikroskopischen und nanoskopischen Bausteine der belebten Natur geben.

Originalveröffentlichung:
Alexander Konrad, Andreas M. Kern, Marc Brecht, and Alfred J. Meixner: Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry–Pérot Resonator. Nano Letters, Vol 15 (7), 2015, DOI 10.1021/acs.nanolett.5b00766

Kontakt:
Prof. Dr. Alfred Meixner
Universität Tübingen
Institut für Physikalische und Theoretische Chemie
Telefon +49 7071 29-76903
alfred.meixner[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften