Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tübinger Forschungsgruppe baut winziges gekoppeltes optisches Pendel

06.08.2015

Plasmonenresonanz von Goldstäbchen lässt sich auf den Nanometer genau stimmen – Künftiger Anwendungsbereich in der Mikroskopie und bei ultra-schnellen Computern

Forschern aus der Arbeitsgruppe von Professor Alfred Meixner und PD Dr. Marc Brecht vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen ist es gelungen, einen ultrakleinen, extrem präzise durchstimmbaren optischen Schalter von nur wenigen Hundert Nanometer Größe zu bauen – ein Nanometer entspricht einem Millionstel Millimeter.


Schematische Darstellung des Experiments mit dem Resonator und dem Goldstäbchen. Der Spiegelab-stand ist in etwa halb so lang wie die Wellenlänge des Lichts (/2). Rechts: Messungen der optischen Eigenschaf-ten des Systems (hier in Form von Spektren) bei Bestrahlen mit einem Laser zur Anregung der Plasmonen-schwingung im Goldstäbchen (beige-farbene Kurven) und nach Bestrahlen mit weißem Licht zur Bestimmung der Resonanzwellenlänge des Hohlrau-mes je nach eingestelltem Spiegelab-stand. Die roten Kurven zeigen die Emissions-Spektren des gekoppelten Systems. Abbildung: Alexander Kon-rad/Universität Tübingen

Der experimentelle Aufbau beruht auf einem Prinzip, das als gekoppeltes optisches Pendel beschrieben werden kann. Die verbundenen Pendel bestehen aus einem nur 40 Nanometer langen Goldstäbchen und einem stimmbaren optischen Mikroresonator. Solch winzige Schalter könnten in der Mikroskopie Anwendung finden oder auch in schnellen, dabei jedoch sehr kleinen Computern. Die Forschungsergebnisse wurden in der aktuellen Ausgabe der Nano Letters veröffentlicht.

Werden Goldstäbchen dieser geringen Größe mit rotem Licht beleuchtet, können ihre Leitungselektronen kollektiv zum Schwingen angeregt werden und so für kurze Zeit die Energie des Lichts speichern. Man spricht bei diesem Phänomen von Plasmonenschwingungen. Gleichzeitig wird dadurch ein starkes elektromagnetisches Wechselfeld in unmittelbarer Nähe des Goldstäbchens erzeugt, wodurch es seine Energie wieder abstrahlt. Die Resonanzfrequenz dieser Schwingungen wird durch die Größe und Form der Goldpartikel bestimmt.

„Das Wechselfeld des Goldpartikels ist somit unser erstes optisches Pendel“, erklärt Alfred Meixner. Seine Schwingungsfrequenz lasse sich jedoch nur indirekt, beispielsweise über elektromagnetische Felder wie etwa sichtbares Licht verändern, was bisher nur sehr ungenau bewerkstelligt werden könne.

Das zweite optische Pendel im Experiment der Forscher ist ein sogenannter optischer Mikroresonator. Hierbei wird durch zwei parallel angeordnete Spiegel ein Hohlraum gebildet, der in der Lage ist, eingestrahltes Licht für kurze Zeit einzusperren. Ist der Abstand der Spiegel so eingestellt, dass sichtbares Licht eine stehende Welle zwischen den Spiegeln ausbilden kann, dann entsteht im Hohlraum ein elektromagnetisches Wechselfeld einer bestimmten und präzise einstellbaren Frequenz. „Dieser Abstand ist unter anderem bei der halben Wellenlänge des Lichts erreicht und liegt somit im Bereich von wenigen hundert Nanometern“, erklärt Marc Brecht. „Wir haben hier in Tübingen einen verlässlichen, reproduzierbaren und einfachen Aufbau entwickelt, mit dem wir den Spiegelabstand bis auf den Nanometer genau einstellen können.“

Im Experiment erhielten die Forscher durch Veränderung des Abstands beziehungsweise die Wellenlänge im Resonator entsprechend eine Abstrahlung von Licht variierender Wellenlänge von dem Goldstäbchen. „Die im Gesamtsystem gespeicherte Energie wird abwechselnd zwischen der Plasmonenschwingung im Goldstäbchen und der stehenden Welle im Resonator ausgetauscht“, sagt Brecht. „Die Systeme sind stark gekoppelt.“

Je ähnlicher sich die Frequenzen dieser beiden Pendel sind, umso stärker wird der Effekt. „Die Stärke der Kopplung zwischen Mikroresonator und Plasmon reicht aus, um die optischen Eigenschaften des Goldstäbchens gezielt zu verändern. Das gelingt uns einfach dadurch, dass wir den Spiegelabstand in Namometerschritten vergrößern oder verkleinern“, setzt Meixner hinzu.

Bisher war es nicht möglich, die optischen Eigenschaften der Plasmonenschwingungen von nanoskopischen Goldpartikeln allein durch ihre optische Umgebung zu verändern. „In immer größerem Maße wird eine Verkleinerung von Bauelementen zum optischen Schalten und Übertragen von schnellen Signalen gefordert, wie wir sie heute schon in Glasfasernetzen nutzen“, sagt der Wissenschaftler. Miniaturisierte Elemente, die mit optischen Feldern schaltbar sind, könnten in naher Zukunft beispielsweise in ultra-schnellen Computern Anwendung finden. Aber auch das sich rasant entwickelnde Feld der Mikrobiologie sei angewiesen auf kleinste optische Sensoren, die Auskunft über fundamentale Eigenschaften der mikroskopischen und nanoskopischen Bausteine der belebten Natur geben.

Originalveröffentlichung:
Alexander Konrad, Andreas M. Kern, Marc Brecht, and Alfred J. Meixner: Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry–Pérot Resonator. Nano Letters, Vol 15 (7), 2015, DOI 10.1021/acs.nanolett.5b00766

Kontakt:
Prof. Dr. Alfred Meixner
Universität Tübingen
Institut für Physikalische und Theoretische Chemie
Telefon +49 7071 29-76903
alfred.meixner[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie

25.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics