Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien: Laserphysik auf den Kopf gestellt

17.06.2014

Ein System aus gekoppelten Lasern wurde an der TU Wien hergestellt, das sich völlig paradox verhält: Bei verstärkter Energiezufuhr schaltet sich das Laserlicht aus und bei weniger Energie schaltet es sich ein.

Schallwellen verhallen, Wasserwellen verebben, ein Lichtstrahl wird von einer Wand verschluckt. Dass Wellen absorbiert werden ist ein ganz alltägliches Phänomen. Trotzdem erkannte die Physik erst in den letzten Jahren, welche neuen Möglichkeiten sich ergeben, wenn man diesen Verlust von Energie nicht als lästiges Ärgernis, sondern als erwünschten Effekt betrachtet.


Simulation der Lasermoden, die in diesem System angeregt werden.

TU Wien


Elektronenmikroskopische Aufnahme der gekoppelten Quantenkaskadenlaser. Durch die beiden Drähte wird den Lasern die nötige Energie zugeführt.

TU Wien

An der TU Wien wurde nun ein System aus zwei gekoppelten Lasern hergestellt, bei dem die Balance aus Energiezufuhr und Verlust zu einem paradoxen Verhalten führt: Zusätzliche Energie kann den Laser ausschalten, oder eine Reduktion der Energie den Laser einschalten. Auf diese Weise könnte man logische Schaltungen bauen, die mit Licht funktionieren. Im Fachjournal „Nature Communications“ wurde das entsprechende Experiment nun präsentiert.

Gewöhnliche Laser und paradoxe Laser

„Normalerweise hängt die Lichtintensität eines Lasers auf recht einfache Weise von der Energie ab, die man hineinsteckt“, sagt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Führt man zu wenig Energie zu, geschieht gar nichts. Überschreitet man eine kritische Schwelle, beginnt der Laser zu leuchten, und je mehr Energie man zuführt, umso stärker leuchtet er.“

Doch es geht auch anders. Zwei mikroskopisch kleine kreisförmige Laser wurden an der TU Wien miteinander gekoppelt, sodass ein Gesamtsystem entsteht, in dem die komplizierte Balance von Energiezufuhr und Energieverlust erstaunliche physikalische Effekte hervorruft: Zwei Laser, die sonst leuchten würden, schalten sich gegenseitig aus, wenn man sie koppelt. Mehr Energie führt dann nicht zu mehr Licht, sondern zu völliger Dunkelheit. Umgekehrt kann auch eine Reduktion der Energiezufuhr dazu führen, dass plötzlich das Licht angeht.

„Zunächst stießen wir in einer Computersimulation auf diesen Effekt, und waren ziemlich verblüfft von unseren Ergebnissen“, erzählt Stefan Rotter. Nun ist es gelungen, das vor zwei Jahren vorhergesagte Phänomen experimentell zu bestätigen – in einem Gemeinschaftsprojekt zwischen den Fachrichtungen Physik, Elektrotechnik und Mathematik der TU-Wien und der Universität Princeton (USA). Für das Experiment wurden sogenannte Terahertz-Quantenkaskadenlaser mit einem Durchmesser von weniger als einem Zehntelmillimeter verwendet. „Diese Mikro-Laser sind für solche Experimente besonders gut geeignet, weil ihre optischen Eigenschaften genau angepasst werden können und ihre Wellenlänge recht groß ist“, sagt Martin Brandstetter vom Institut für Photonik der TU-Wien. Dadurch gelangt die Lichtwelle leicht von einem Laser in den anderen.

Gewünschte Imperfektion

Die Absorption von Wellen wird in der Physik meist als unerwünschter Nebeneffekt betrachtet. „Man geht bei theoretischen Berechnungen meist vom perfekten Fall aus, in dem es keine Dissipation gibt“, erklärt Rotter. Es rechnet sich einfach leichter mit Spiegeln, die 100% des Lichtes reflektieren, mit Lichtleitungen, die 100% des Lichts leiten, oder mit Schallwellen, die bei ihrer Ausbreitung keine Energie verlieren. Doch Perfektion ist manchmal einfach langweilig – die interessanten Kopplungseffekte der beiden Laser werden nur sichtbar, wenn man auf ihnen eine speziell absorbierende Metallschicht anbringt, die einen Teil des Lichts absorbiert. Für das paradoxe Verhalten der Laser ist ein kompliziertes mathematisches Phänomen verantwortlich: Das Auftreten sogenannter „Ausnahmepunkte“ – spezielle Schnittpunkte von Flächen in komplexen Räumen, die bei der Berechnung der Zustände des Laser-Systems auftreten. Immer wenn die mathematischen Gleichungen solche Ausnahmepunkte hervorbringen, treten physikalisch recht merkwürdige Phänomene auf.

Solche Kopplungen von Lasern könnten zu neuen elektro-optischen Schaltungen führen. Ähnlich wie heute elektronische Bauteile Input-Signale zu einem Output-Signal verarbeiten, könnte man das auch mit optischen Bauteilen tun. Gekoppelte Mikro-Laser wären dafür ideal: Sie sind leicht auf einem kleinen Chip unterzubringen, und wie sich nun zeigt, bieten sie ein breites Repertoire an nicht-trivialen Schaltungsmöglichkeiten.

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140613/ncomms5034/full/ncomms5034.html Originalpublikation
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/laserupsidedown/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie