Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien: Laserphysik auf den Kopf gestellt

17.06.2014

Ein System aus gekoppelten Lasern wurde an der TU Wien hergestellt, das sich völlig paradox verhält: Bei verstärkter Energiezufuhr schaltet sich das Laserlicht aus und bei weniger Energie schaltet es sich ein.

Schallwellen verhallen, Wasserwellen verebben, ein Lichtstrahl wird von einer Wand verschluckt. Dass Wellen absorbiert werden ist ein ganz alltägliches Phänomen. Trotzdem erkannte die Physik erst in den letzten Jahren, welche neuen Möglichkeiten sich ergeben, wenn man diesen Verlust von Energie nicht als lästiges Ärgernis, sondern als erwünschten Effekt betrachtet.


Simulation der Lasermoden, die in diesem System angeregt werden.

TU Wien


Elektronenmikroskopische Aufnahme der gekoppelten Quantenkaskadenlaser. Durch die beiden Drähte wird den Lasern die nötige Energie zugeführt.

TU Wien

An der TU Wien wurde nun ein System aus zwei gekoppelten Lasern hergestellt, bei dem die Balance aus Energiezufuhr und Verlust zu einem paradoxen Verhalten führt: Zusätzliche Energie kann den Laser ausschalten, oder eine Reduktion der Energie den Laser einschalten. Auf diese Weise könnte man logische Schaltungen bauen, die mit Licht funktionieren. Im Fachjournal „Nature Communications“ wurde das entsprechende Experiment nun präsentiert.

Gewöhnliche Laser und paradoxe Laser

„Normalerweise hängt die Lichtintensität eines Lasers auf recht einfache Weise von der Energie ab, die man hineinsteckt“, sagt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Führt man zu wenig Energie zu, geschieht gar nichts. Überschreitet man eine kritische Schwelle, beginnt der Laser zu leuchten, und je mehr Energie man zuführt, umso stärker leuchtet er.“

Doch es geht auch anders. Zwei mikroskopisch kleine kreisförmige Laser wurden an der TU Wien miteinander gekoppelt, sodass ein Gesamtsystem entsteht, in dem die komplizierte Balance von Energiezufuhr und Energieverlust erstaunliche physikalische Effekte hervorruft: Zwei Laser, die sonst leuchten würden, schalten sich gegenseitig aus, wenn man sie koppelt. Mehr Energie führt dann nicht zu mehr Licht, sondern zu völliger Dunkelheit. Umgekehrt kann auch eine Reduktion der Energiezufuhr dazu führen, dass plötzlich das Licht angeht.

„Zunächst stießen wir in einer Computersimulation auf diesen Effekt, und waren ziemlich verblüfft von unseren Ergebnissen“, erzählt Stefan Rotter. Nun ist es gelungen, das vor zwei Jahren vorhergesagte Phänomen experimentell zu bestätigen – in einem Gemeinschaftsprojekt zwischen den Fachrichtungen Physik, Elektrotechnik und Mathematik der TU-Wien und der Universität Princeton (USA). Für das Experiment wurden sogenannte Terahertz-Quantenkaskadenlaser mit einem Durchmesser von weniger als einem Zehntelmillimeter verwendet. „Diese Mikro-Laser sind für solche Experimente besonders gut geeignet, weil ihre optischen Eigenschaften genau angepasst werden können und ihre Wellenlänge recht groß ist“, sagt Martin Brandstetter vom Institut für Photonik der TU-Wien. Dadurch gelangt die Lichtwelle leicht von einem Laser in den anderen.

Gewünschte Imperfektion

Die Absorption von Wellen wird in der Physik meist als unerwünschter Nebeneffekt betrachtet. „Man geht bei theoretischen Berechnungen meist vom perfekten Fall aus, in dem es keine Dissipation gibt“, erklärt Rotter. Es rechnet sich einfach leichter mit Spiegeln, die 100% des Lichtes reflektieren, mit Lichtleitungen, die 100% des Lichts leiten, oder mit Schallwellen, die bei ihrer Ausbreitung keine Energie verlieren. Doch Perfektion ist manchmal einfach langweilig – die interessanten Kopplungseffekte der beiden Laser werden nur sichtbar, wenn man auf ihnen eine speziell absorbierende Metallschicht anbringt, die einen Teil des Lichts absorbiert. Für das paradoxe Verhalten der Laser ist ein kompliziertes mathematisches Phänomen verantwortlich: Das Auftreten sogenannter „Ausnahmepunkte“ – spezielle Schnittpunkte von Flächen in komplexen Räumen, die bei der Berechnung der Zustände des Laser-Systems auftreten. Immer wenn die mathematischen Gleichungen solche Ausnahmepunkte hervorbringen, treten physikalisch recht merkwürdige Phänomene auf.

Solche Kopplungen von Lasern könnten zu neuen elektro-optischen Schaltungen führen. Ähnlich wie heute elektronische Bauteile Input-Signale zu einem Output-Signal verarbeiten, könnte man das auch mit optischen Bauteilen tun. Gekoppelte Mikro-Laser wären dafür ideal: Sie sind leicht auf einem kleinen Chip unterzubringen, und wie sich nun zeigt, bieten sie ein breites Repertoire an nicht-trivialen Schaltungsmöglichkeiten.

Rückfragehinweis:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Weitere Informationen:

http://www.nature.com/ncomms/2014/140613/ncomms5034/full/ncomms5034.html Originalpublikation
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/laserupsidedown/ Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie